Euler’s divergent series in arithmetic progressions |
|
Author: | Ernvall-Hytönen, Anne-Maria1; Matala-aho, Tapani2; Seppälä, Louna2 |
Organizations: |
1Matematik och Statistik, Åbo Akademi University, Domkyrkotorget 1, 20500 Åbo, Finland 2Matematiikka, PL 8000, 90014 Oulun yliopisto, Finland |
Format: | article |
Version: | published version |
Access: | open |
Online Access: | PDF Full Text (PDF, 0.1 MB) |
Persistent link: | http://urn.fi/urn:nbn:fi-fe2020040710622 |
Language: | English |
Published: |
University of Waterloo,
2019
|
Publish Date: | 2020-04-07 |
Description: |
AbstractLet \(ξ\) and \(m\) be integers satisfying \(ξ \ne 0\) and \(m ≥ 3\). We show that for any given integers \(a\) and \(b\), \(b \ne 0\), there are \(\frac{φ(m)}{2}\) reduced residue classes modulo \(m\) each containing infinitely many primes \(p\) such that \(a−bF_p(ξ) \ne 0\), where \(F_p(ξ) =\sum^{\infty}_{n=0} n!ξ^n\) is the p-adic evaluation of Euler’s factorial series at the point \(ξ.\) see all
|
Series: |
Journal of integer sequences |
ISSN: | 1530-7638 |
ISSN-E: | 1530-7638 |
ISSN-L: | 1530-7638 |
Volume: | 22 |
Issue: | 2 |
Article number: | 19.2.2 |
Type of Publication: |
A1 Journal article – refereed |
Field of Science: |
111 Mathematics |
Subjects: | |
Copyright information: |
© 2019 The Authors. |