University of Oulu

Ye L., Shi J., Ferdinando H., Seppänen T., Alasaarela E. (2019) School Violence Detection Based on Multi-sensor Fusion and Improved Relief-F Algorithms. In: Han S., Ye L., Meng W. (eds) Artificial Intelligence for Communications and Networks. AICON 2019. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 287. Springer, Cham

School violence detection based on multi-sensor fusion and improved relief-F algorithms

Saved in:
Author: Ye, Liang1,2; Shi, Jifu1; Ferdinando, Hany2,3;
Organizations: 1Department of Information and Communication Engineering, Harbin Institute of Technology, No. 2 Yikuang Street, Harbin 150080, China
2Health and Wellness Measurement Research Group, OPEM Unit, University of Oulu, Pentti Kaiteran katu 1, 90014 Oulu, Finland
3Department of Electrical Engineering, Petra Christian University, Siwalankerto 121-131, Surabaya 60236, Indonesia
4Physiological Signal Analysis Team, University of Oulu, Pentti Kaiteran katu 1, 90014 Oulu, Finland
Format: article
Version: accepted version
Access: open
Online Access: PDF Full Text (PDF, 0.3 MB)
Persistent link: http://urn.fi/urn:nbn:fi-fe2020042822806
Language: English
Published: Springer Nature, 2019
Publish Date: 2020-07-05
Description:

Abstract

School bullying is a common social problem around the world, and school violence is considered to be the most harmful form of school bullying. This paper proposes a school violence detecting method based on multi-sensor fusion and improved Relief-F algorithms. Data are gathered with two movement sensors by role playing of school violence and daily-life activities. Altogether 9 kinds of activities are recorded. Time domain features and frequency domain features are extracted and filtered by an improved Relief-F algorithm. Then the authors build a two-level classifier. The first level is a Decision Tree classifier which separates the activity of jump from the others, and the second level is a Radial Basis Function neural network which classifies the remainder 8 kinds of activities. Finally a decision layer fusion algorithm combines the recognition results of the two sensors together. The average recognition accuracy of school violence reaches 84.4%, and that of daily-life reaches 97.3%.

see all

Series: Lecture notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering
ISSN: 1867-8211
ISSN-E: 1867-822X
ISSN-L: 1867-8211
ISBN: 978-3-030-22971-9
ISBN Print: 978-3-030-22970-2
Pages: 261 - 269
DOI: 10.1007/978-3-030-22971-9_22
OADOI: https://oadoi.org/10.1007/978-3-030-22971-9_22
Host publication: Artificial intelligence for communications and networks : First EAI International Conference, AICON 2019 Harbin, China, May 25–26, 2019, Proceedings, Part II
Host publication editor: Han, Shuai
Ye, Liang
Meng, Weixiao
Conference: European Alliance for Innovation International Conference on Artificial Intelligence for Communications and Networks (AICON)
Type of Publication: A4 Article in conference proceedings
Field of Science: 113 Computer and information sciences
Subjects:
Funding: This work was supported by the National Natural Science Foundation of China (61602127), the Directorate General of Higher Education, Indonesia (2142/E4.4/K/2013) and the North Ostrobothnia Regional Fund of the Finnish Cultural Foundation.
Copyright information: © ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2019. This is a post-peer-review, pre-copyedit version of an article published in Artificial intelligence for communications and networks : First EAI International Conference, AICON 2019 Harbin, China, May 25–26, 2019, Proceedings, Part II. The final authenticated version is available online at: https://doi.org/10.1007/978-3-030-22971-9_22.