A scalable and efficient multi-label cnn-based license plate recognition on spark |
|
Author: | Zhang, Weishan1; Xue, Bing1; Zhou, Jiehan2; |
Organizations: |
1Department of Software Engineering, China University of Petroleum Qingdao, China 2Oulu University, Finland 3School Computer and Communication Engineering, China University of Petroleum Qingdao, China
4College Computer and Communication Engineering, China University of Petroleum Qingdao, China
|
Format: | article |
Version: | accepted version |
Access: | open |
Online Access: | PDF Full Text (PDF, 0.6 MB) |
Persistent link: | http://urn.fi/urn:nbn:fi-fe2020042922897 |
Language: | English |
Published: |
Institute of Electrical and Electronics Engineers,
2018
|
Publish Date: | 2020-04-29 |
Description: |
AbstractSurveillance cameras are being rapidly deployed for facilitating smart transportation. Recognizing the vehicle license plate from massive videos becomes a challenge in context of system scalability and efficiency. This paper proposes a novel algorithm for scalable and efficient license plate recognition (SELPR). The SELPR algorithm first locates the license plate using a YOLO (You Look Only Once) network and recognizes the license plate using multi-label convolutional neural network (Multi-label CNN). We deploy the SELPR algorithm to the Apache Spark framework to evaluate its scalability and efficiency in parallel processing. The results demonstrates that SELPR can achieve synthesized performance with 95% recognition accuracy, better processing efficiency and scalability on a Spark cluster. see all
|
ISBN: | 978-1-5386-9380-3 |
ISBN Print: | 978-1-5386-9381-0 |
Pages: | 1738 - 1744 |
Article number: | 8560272 |
DOI: | 10.1109/SmartWorld.2018.00294 |
OADOI: | https://oadoi.org/10.1109/SmartWorld.2018.00294 |
Host publication: |
4th IEEE SmartWorld, 15th IEEE International Conference on Ubiquitous Intelligence and Computing, Advanced and Trusted Computing, Scalable Computing and Communications, Cloud and Big Data Computing, Internet of People and Smart City Innovations, SmartWorld/UIC/ATC/ScalCom/CBDCom/IoP/SCI 2018 |
Host publication editor: |
Loulergue, F. Wang, G. Bhuiyan, M. Z. A. Ma, X. Li, P. Roveri, M. Han, Q. Chen, L. |
Conference: |
IEEE International Conference on Cloud and Big Data Computing |
Type of Publication: |
A4 Article in conference proceedings |
Field of Science: |
213 Electronic, automation and communications engineering, electronics |
Subjects: | |
Funding: |
This work was supported in part by the Key Research Program of Shandong Province under Grant 2017GGX10140 and in part by the Fundamental Research Funds for the Central Universities(15CX08015A), National Natural Science Foundation of China (No. 61309024). |
Copyright information: |
© 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works. |