University of Oulu

A. Shahid et al., "Demo Abstract: Identification of LPWAN Technologies using Convolutional Neural Networks," IEEE INFOCOM 2019 - IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS), Paris, France, 2019, pp. 991-992,

Demo abstract : identification of LPWAN technologies using convolutional neural networks

Saved in:
Author: Shahid, Adnan1; Fontaine, Jaron1; Haxhibeqiri, Jetmir1;
Organizations: 1IDLab, Ghent University – imec, Ghent, Belgium
2CWC, University of Oulu, Finland
Format: abstract
Version: accepted version
Access: open
Online Access: PDF Full Text (PDF, 5.2 MB)
Persistent link:
Language: English
Published: Institute of Electrical and Electronics Engineers, 2019
Publish Date: 2020-04-30


This paper demonstrates a Convolutional Neural Network (CNN) based mechanism for identification of low power wide area network (LPWAN) technologies such as LoRA, Sigfox, and IEEE 802.15.4g. Since the technologies operate in unlicensed bands and can interfere with each other, it becomes essential to identify technologies (or interference in general) so that the impact of interference can be minimized by better managing the spectrum. Contrary to the traditional rule-based identification mechanisms, we use Convolutional Neural Networks (CNNs) for identification, which do not require any domain expertise. We demonstrate two types of CNN based classifiers: (i) CNN based on raw IQ samples, and (ii) CNN based on Fast Fourier Transform (FFT), which give classification accuracies close to 95% and 98%, respectively. In addition, an online video is created for demonstrating the process [1].

see all

ISBN: 978-1-7281-1878-9
ISBN Print: 978-1-7281-1879-6
Pages: 1 - 2
DOI: 10.1109/INFCOMW.2019.8845259
Host publication: IEEE INFOCOM 2019 - IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS), 29 April-2 May 2019, Paris, France
Conference: IEEE Conference on Computer Communications Workshops
Field of Science: 213 Electronic, automation and communications engineering, electronics
Copyright information: © 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.