University of Oulu

Y. Ogawa, Y. Tanaka, A. Kadokura, K. Hosokawa, Y. Ebihara, T. Motoba, B. Gustavsson, U. Brändström, Y. Sato, S. Oyama, M. Ozaki, T. Raita, F. Sigernes, S. Nozawa, K. Shiokawa, M. Kosch, K. Kauristie, C. Hall, S. Suzuki, Y. Miyoshi, A. Gerrard, H. Miyaoka, R. Fujii, Development of low-cost multi-wavelength imager system for studies of aurora and airglow, Polar Science, Volume 23, 2020, 100501, ISSN 1873-9652,

Development of low-cost multi-wavelength imager system for studies of aurora and airglow

Saved in:
Author: Ogawa, Y.1,2,3; Tanaka, Y.1,2,3; Kadokura, A.1,2,3;
Organizations: 1National Institute of Polar Research, Japan
2The Graduate University for Advanced Studies (SOKENDAI), Japan
3Joint Support-Center for Data Science Research, Research Organization of Information and Systems, Japan
4Graduate School of Informatics and Engineering, The University of Electro-Communications, Japan
5Research Institute for Sustainable Humanosphere, Kyoto University, Japan
6The Johns Hopkins University Applied Physics Laboratory, USA
7UiT the Arctic University of Norway, Norway
8Swedish Institute of Space Physics, Sweden
9Nippon Institute of Technology, Tokyo, Japan
10Institute for Space–Earth Environmental Research, Nagoya University, Japan
11University of Oulu, Finland
12Graduate School of Natural Science and Technology, Kanazawa University, Japan
13Sodankylä Geophysical Observatory, Finland
14University Centre in Svalbard, Norway
15Lancaster University, UK
16South African National Space Agency, South Africa
17Finnish Meteorological Institute, Finland
18Aichi University, Japan
19Research Organization of Information and Systems, Japan
Format: article
Version: accepted version
Access: open
Online Access: PDF Full Text (PDF, 1.7 MB)
Persistent link:
Language: English
Published: Elsevier, 2020
Publish Date: 2021-12-16


This paper introduces a new system that can monitor aurora and atmospheric airglow using a low-cost Watec monochromatic imager (WMI) equipped with a sensitive camera, a filter with high transmittance, and the non-telecentric optics. The WMI system with 486-nm, 558-nm, and 630-nm band-pass filters has observable luminosity of about ~200–4000 Rayleigh for 1.07-sec exposure time and about ~40–1200 Rayleigh for 4.27-sec exposure time, for example. It is demonstrated that the WMI system is capable of detecting 428-nm auroral intensities properly, through comparison with those measured with a collocated electron-multiplying charge-coupled device (EMCCD) imager system with narrower band-pass filter. The WMI system has two distinct advantages over the existing system: One makes it possible to reduce overall costs, and the other is that it enables the continuous observation even under twilight and moonlight conditions. Since 2013 a set of multi-wavelength WMIs has been operating in northern Scandinavia, Svalbard, and Antarctica to study meso- and large-scale aurora and airglow phenomena. Future development of the low-cost WMI system is expected to provide a great opportunity for constructing a global network for multi-wavelength aurora and airglow monitoring.

see all

Series: Polar science
ISSN: 1873-9652
ISSN-E: 1876-4428
ISSN-L: 1873-9652
Volume: 23
Article number: 100501
DOI: 10.1016/j.polar.2019.100501
Type of Publication: A1 Journal article – refereed
Field of Science: 115 Astronomy and space science
Funding: This research was financially supported by the Grants-in-Aid for Scientific Research S (15H05747), Scientific Research B (17H02968) and Scientific Research C (17K05672) by the Ministry of Education, Science, Sports and Culture, Japan. This work was also supported by ROIS-DS-JOINT (001RP2018, and 019RP2018). The WMI system was calibrated at the calibration facility of NIPR, Japan. The production of this paper was supported by a NIPR publication subsidy.
Dataset Reference: Datasets related to this article can be found at
Copyright information: © 2019 Elsevier B.V. and NIPR. This manuscript version is made available under the CC-BY-NC-ND 4.0 license