University of Oulu

R. A. Addad, D. L. C. Dutra, M. Bagaa, T. Taleb and H. Flinck, "Towards Studying Service Function Chain Migration Patterns in 5G Networks and Beyond," 2019 IEEE Global Communications Conference (GLOBECOM), Waikoloa, HI, USA, 2019, pp. 1-6, doi: 10.1109/GLOBECOM38437.2019.9013983

Towards studying service function chain migration patterns in 5G networks and beyond

Saved in:
Author: Addad, Rami Akrem1; Dutra, Diego Leonel Cadette2; Bagaa, Miloud1;
Organizations: 1Aalto University, Espoo, Finland
2Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
3Centre for Wireless Communications (CWC), University of Oulu, Oulu, Finland
4Nokia Bell Labs, Espoo, Finland
Format: article
Version: accepted version
Access: open
Online Access: PDF Full Text (PDF, 1.5 MB)
Persistent link:
Language: English
Published: Institute of Electrical and Electronics Engineers, 2019
Publish Date: 2020-06-15


Given the indispensable need for a reliable network architecture to cope with 5G networks, 3GPP introduced a covet technology dubbed 5G Service Based Architecture (5G-SBA). Meanwhile, Multi-access Edge Computing (MEC) combined with SBA conveys a better experience to end-users by bringing application hosting from centralized data centers down to the network edge, closer to consumers and the data generated by applications. Both the 3GPP and the ETSI proposals offered numerous benefits, particularly the ability to deliver highly customizable services. Nevertheless, compared to large datacenters that tolerate the hosting of standard virtualization technologies (Virtual Machines (VMs) and servers), MEC nodes are characterized by lower computational resources, thus the debut of lightweight micro-service based applications. Motivated by the deficiency of current micro-services-based applications to support users’ mobility and assuming that all these issues are under the umbrella of Service Function Chain (SFC) migrations, we aim to introduce, explain and evaluate diverse SFC migration patterns. The obtained results demonstrate that there is no clear vanquisher, but selecting the right SFC migration pattern depends on users’ motion, applications’ requirements, and MEC nodes’ resources.

see all

Series: IEEE Global Communications Conference
ISSN: 2334-0983
ISSN-E: 2576-6813
ISSN-L: 2334-0983
ISBN: 978-1-7281-0962-6
ISBN Print: 978-1-7281-0963-3
Article number: 9013983
DOI: 10.1109/GLOBECOM38437.2019.9013983
Host publication: 2019 IEEE Global Communications Conference, GLOBECOM 2019
Conference: IEEE Global Communications Conference
Type of Publication: A4 Article in conference proceedings
Field of Science: 213 Electronic, automation and communications engineering, electronics
Funding: This research work is partially supported by the European Union's Horizon 2020 research and innovation program under the MATILDA project with grant agreement No. 761898. It is also partially funded by the Academy of Finland Projects CSN and 6Genesis under grant agreement No. 311654 and No. 318927, respectively.
Academy of Finland Grant Number: 311654
Detailed Information: 311654 (Academy of Finland Funding decision)
318927 (Academy of Finland Funding decision)
Copyright information: © 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.