University of Oulu

O. El Marai, J. Prados-Garzon, M. Bagaa and T. Taleb, "Ensuring High QoE for DASH-Based Clients Using Deterministic Network Calculus in SDN Networks," 2019 IEEE Global Communications Conference (GLOBECOM), Waikoloa, HI, USA, 2019, pp. 1-6, doi: 10.1109/GLOBECOM38437.2019.9013633

Ensuring high QoE for DASH-based clients using deterministic network calculus in SDN networks

Saved in:
Author: El Marai, Oussama1; Prados-Garzon, Jonatha1; Bagaa, Miloud1;
Organizations: 1Aalto University, Espoo, Finland
2University of Oulu, 90570 Oulu, Finland
Format: article
Version: accepted version
Access: open
Online Access: PDF Full Text (PDF, 0.3 MB)
Persistent link: http://urn.fi/urn:nbn:fi-fe2020062245140
Language: English
Published: Institute of Electrical and Electronics Engineers, 2019
Publish Date: 2020-06-22
Description:

Abstract

HTTP Adaptive Streaming (HAS) is becoming the de-facto video delivery technology over best- effort networks nowadays, thanks to the myriad advantages it brings. However, many studies have shown that HAS suffers from many Quality of Experience (QoE)-related issues in the presence of competing players. This is mainly caused by the selfishness of the players resulting from the decentralized intelligence given to the player. Another limitation is the bottleneck link that could happen at any time during the streaming session and anywhere in the network. These issues may result in wobbling bandwidth perception by the players and could lead to missing the deadline for chunk downloads, which result in the most annoying issue consisting of rebuffering events. In this paper, we leverage the Software-Defined Networking paradigm to take advantage of the global view of the network and its powerful intelligence that allows reacting to the network changing conditions. Ultimately, we aim at preventing the re-buffering events, resulting from deadline misses, and ensuring high QoE for the accepted clients in the system. To this end, we use Deterministic Network Calculus (DNC) to guarantee a maximum delay for the download of the video chunks while maximizing the perceived video quality. Simulation results show that the proposed solution ensures high efficiency for the accepted clients without any rebuffering events which result in high user QoE. Consequently, it might be highly useful for scenarios where video chunks should be strictly downloaded on- time or ensuring low delay with high user QoE such as serving video premium subscribers or remote control/driving of an autonomous vehicle in future 5G mobile networks.

see all

Series: IEEE Global Communications Conference
ISSN: 2334-0983
ISSN-E: 2576-6813
ISSN-L: 2334-0983
ISBN: 978-1-7281-0962-6
ISBN Print: 978-1-7281-0963-3
Pages: 1 - 6
Article number: 9013633
DOI: 10.1109/GLOBECOM38437.2019.9013633
OADOI: https://oadoi.org/10.1109/GLOBECOM38437.2019.9013633
Host publication: 2019 IEEE Global Communications Conference, GLOBECOM 2019
Conference: IEEE Global Communications Conference
Type of Publication: A4 Article in conference proceedings
Field of Science: 213 Electronic, automation and communications engineering, electronics
Subjects:
Funding: This work was partially supported by the European Union’s Horizon 2020 research and innovation programme under the MATILDA project with grant agreement No. 761898, and by the Academy of Finland’s Flagship programme 6Genesis under grant agreement No. 318927. It was also supported in part by the Academy of Finland under CSN project with grant No. 311654.
Academy of Finland Grant Number: 318927
311654
Detailed Information: 318927 (Academy of Finland Funding decision)
311654 (Academy of Finland Funding decision)
Copyright information: © 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.