University of Oulu

R. Amer, H. Elsawy, M. M. Butt, E. A. Jorswieck, M. Bennis and N. Marchetti, "Optimized Caching and Spectrum Partitioning for D2D Enabled Cellular Systems With Clustered Devices," in IEEE Transactions on Communications, vol. 68, no. 7, pp. 4358-4374, July 2020, doi: 10.1109/TCOMM.2020.2983015

Optimized caching and spectrum partitioning for D2D enabled cellular systems with clustered devices

Saved in:
Author: Amer, Ramy1; Elsawy, Hesham2; Butt, M. Majid3,1;
Organizations: 1CONNECT Centre for Future Networks, Trinity College Dublin, Ireland
2King Fahd University of Petroleum and Minerals (KFUPM), Saudi Arabia
3Nokia Bell Labs, France
4Institute for Communications Technology TU Braunschweig, Germany
5Centre for Wireless Communications, University of Oulu, Finland
6Department of Computer Engineering, Kyung Hee University, South Korea
Format: article
Version: accepted version
Access: open
Online Access: PDF Full Text (PDF, 4 MB)
Persistent link: http://urn.fi/urn:nbn:fi-fe2020081354619
Language: English
Published: Institute of Electrical and Electronics Engineers, 2020
Publish Date: 2020-08-13
Description:

Abstract

Caching at mobile devices and leveraging device-to-device (D2D) communication are two promising approaches to support massive content delivery over wireless networks. The analysis of cache-enabled wireless networks is usually carried out by assuming that devices are uniformly distributed, however, in social networks, mobile devices are intrinsically grouped into disjoint clusters. In this regards, this paper proposes a spatiotemporal mathematical model that tracks the service requests arrivals and account for the clustered devices geometry. Two kinds of devices are assumed, particularly, content clients and content providers. Content providers are assumed to have a surplus memory which is exploited to proactively cache contents from a known library, following a random probabilistic caching scheme. Content clients can retrieve a requested content from the nearest content provider in their proximity (cluster), or, as a last resort, the base station (BS). The developed spatiotemporal model is leveraged to formulate a joint optimization problem of the content caching and spectrum partitioning in order to minimize the average service delay. Due to the high complexity of the optimization problem, the caching and spectrum partitioning problems are decoupled and solved iteratively using the block coordinate descent (BCD) optimization technique. To this end, an optimal and suboptimal solutions are obtained for the bandwidth partitioning and probabilistic caching subproblems, respectively. Numerical results highlight the superiority of the proposed scheme over conventional caching schemes under equal and optimized bandwidth allocations. Particularly, it is shown that the average service delay is reduced by nearly 100% and 350%, compared to the Zipf and uniform caching schemes under equal bandwidth allocations, respectively.

see all

Series: IEEE transactions on communications
ISSN: 0090-6778
ISSN-E: 1558-0857
ISSN-L: 0090-6778
Volume: 68
Issue: 7
Pages: 4358 - 4374
DOI: 10.1109/TCOMM.2020.2983015
OADOI: https://oadoi.org/10.1109/TCOMM.2020.2983015
Type of Publication: A1 Journal article – refereed
Field of Science: 213 Electronic, automation and communications engineering, electronics
Subjects:
Funding: This publication has emanate from research conducted with the financial support of Science Foundation Ireland (SFI) and is co-funded under the European Regional Development Fund under Grant Number 13/RC/2077.
Copyright information: © 2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.