A temperature-responsive copper molybdate polymorph mixture near to water boiling point by a simple cryogenic quenching route |
|
Author: | Joseph, Nina1; Varghese, Jobin1; Teirikangas, Merja1; |
Organizations: |
1Microelectronics Research Unit, Faculty of Information Technology and Electrical Engineering, University of Oulu, P. O. Box 4500,Oulu FI-90014, Finland |
Format: | article |
Version: | accepted version |
Access: | open |
Online Access: | PDF Full Text (PDF, 6.1 MB) |
Persistent link: | http://urn.fi/urn:nbn:fi-fe2020090768681 |
Language: | English |
Published: |
American Chemical Society,
2020
|
Publish Date: | 2020-12-13 |
Description: |
AbstractSmart temperature-responsive inorganic materials in accessible temperature ranges open up new positions in the technology. Herein, we present for the first time a CuMoO₄ polymorph mixture prepared by a simple cryogenic quenching approach, which offers a fast temperature response close to water boiling temperature for use as a permanent temperature recorder. The new cryogenic quenching technique initiates the formation of a unique polymorph mixture of a deep brown color with a nonuniform combination of γ- and α-CuMoO₄, with the γ phase being confined to the outer region of α-CuMoO₄, which has been prepared by conventional solid-state synthesis. In situ structural analysis and refinement results confirm the presence of CuMoO₄ α and γ polymorphs in which the amount of γ polymorph decreases and that of the α phase increases with temperature, accounting for the irreversible thermochromic behavior. The thermal analysis reveals that the polymorph mixture exhibits a fast response with the color changing from deep brown to bright green with intermediate colors of light brown, yellowish green, and light green depending on the exposure temperature as observed from reflectance measurements. see all
|
Series: |
ACS applied materials & interfaces |
ISSN: | 1944-8244 |
ISSN-E: | 1944-8252 |
ISSN-L: | 1944-8244 |
Volume: | 12 |
Issue: | 1 |
Pages: | 1046 - 1053 |
DOI: | 10.1021/acsami.9b17300 |
OADOI: | https://oadoi.org/10.1021/acsami.9b17300 |
Type of Publication: |
A1 Journal article – refereed |
Field of Science: |
213 Electronic, automation and communications engineering, electronics 216 Materials engineering |
Subjects: | |
Funding: |
The authors are thankful to European Research Council (ERC) Project No 24001893 and ERC POC No 812837 for the financial support. |
EU Grant Number: |
(812837) FUNCOMP - Fabricating Functional Components in Room Temperature (640887) LTCeramics - Low Temperature Ceramics Applications |
Dataset Reference: |
The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acsami.9b17300. |
https://pubs.acs.org/doi/10.1021/acsami.9b17300 |
|
Copyright information: |
This document is the Accepted Manuscript version of a Published Work that appeared in final form in ACS Applied Materials & Interfaces, copyright © American Chemical Society after peer review and technical editing by the publisher. To access the final edited and published work see https://doi.org/10.1021/acsami.9b17300. |