Low-velocity impact of hot-pressed PVA fiber-reinforced alkali-activated stone wool composites |
|
Author: | Carvelli, Valter1; Veljkovic, Ana1; Nguyen, Hoang2; |
Organizations: |
1Department A.B.C., Politecnico di Milano, Piazza Leonardo Da Vinci 32, 20133, Milan, Italy 2Fibre and Particle Engineering Research Unit, University of Oulu, Pentti Kaiteran katu 1, 90014, Oulu, Finland 3Department of Mechanical Engineering, Technical University of Denmark, 2800, Kgs. Lyngby, Denmark
4Department of Health Technology, Technical University of Denmark, 2800, Kgs. Lyngby, Denmark
5Department of Civil, Environmental and Geomatic Engineering, University College London, London, WC1E 6BT, UK |
Format: | article |
Version: | accepted version |
Access: | open |
Online Access: | PDF Full Text (PDF, 2.2 MB) |
Persistent link: | http://urn.fi/urn:nbn:fi-fe2020091569605 |
Language: | English |
Published: |
Elsevier,
2020
|
Publish Date: | 2020-09-15 |
Description: |
AbstractThis study evaluates the effects of the manufacturing process and fiber reinforcement on low-velocity impact response of the recently developed PVA fiber-reinforced alkali-activated stone wool composites. To this end, reinforced and unreinforced specimens manufactured by hot-pressing were compared with those oven curing. The results revealed a similar impact response for the hot-pressed composite produced at 120 °C for 3 h and its counterpart cured at ambient pressure at 60 °C oven for 24 h. Furthermore, fiber reinforcement significantly improves the impact resistance of the hot-pressed composites showing about a 50% increase in peak load and a 40% reduction in penetration compared to the unreinforced materials. In view of the development of the hot-pressed composites and potential applications, accurate predictive models are of extremely importance, hence the material mechanical behavior was here simulated by adopting the concrete damage plasticity model to predict the low-velocity impact response of both unreinforced and reinforced materials and successfully verified for the scaling-up purpose. see all
|
Series: |
Cement & concrete composites |
ISSN: | 0958-9465 |
ISSN-E: | 1873-393X |
ISSN-L: | 0958-9465 |
Volume: | 114 |
Article number: | 103805 |
DOI: | 10.1016/j.cemconcomp.2020.103805 |
OADOI: | https://oadoi.org/10.1016/j.cemconcomp.2020.103805 |
Type of Publication: |
A1 Journal article – refereed |
Field of Science: |
212 Civil and construction engineering 214 Mechanical engineering 216 Materials engineering |
Subjects: | |
Funding: |
This work was done as a part of FLOW (project number: 8904/31/2017) project funded by Business Finland in the ERA-MIN 2 Innovation program, which is part of the EU Horizon 2020 program. P. Kinnunen acknowledges financial support from Academy of Finland (grants no. 322085, 329477 and 326291). N. Ranjbar has received funding from the EU Horizon 2020 research and innovative program under the Marie Sklodowska-Curie (grant no. 713683). |
Academy of Finland Grant Number: |
322085 329477 |
Detailed Information: |
322085 (Academy of Finland Funding decision) 329477 (Academy of Finland Funding decision) |
Copyright information: |
© 2020 Elsevier Ltd. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/. |
https://creativecommons.org/licenses/by-nc-nd/4.0/ |