University of Oulu

Niinimäki, S, Narra, N, Härkönen, L, et al. Do bone geometric properties of the proximal femoral diaphysis reflect loading history, muscle properties, or body dimensions? Am J Hum Biol. 2019; 31:e23246. https://doi.org/10.1002/ajhb.23246

Do bone geometric properties of the proximal femoral diaphysis reflect loading history, muscle properties, or body dimensions?

Saved in:
Author: Niinimäki, Sirpa1; Narra, Nathaniel2; Härkönen, Laura3;
Organizations: 1Archaeology, University of Oulu, Oulu, Finland
2Department of Electronics and Communications Engineering, BioMediTech, Tampere University of Technology, Tampere, Finland
3Aquatic population dynamics Natural Resources Institute Finland (Luke), Oulu, Finland
4Laboratory of Civil Engineering, Tampere University of Technology, Tampere, Finland
5Department of Health Sciences, University of Jyväskylä, Jyväskylä, Finland
6GeroCenter Foundation for Aging Research and Development, Jyväskylä, Finland
7Jyväskylä Central Hospital, Jyväskylä, Finland
8Department of Electronics and Communications Engineering, BioMediTech, Tampere University of Technology, Tampere, Finlan
9De la Préhistoire à l'Actuel: Culture, Environnement, et Anthropologie (PACEA), Université de Bordeaux, Bordeaux, France
10The UKK Institute for Health Promotion Research, Tampere, Finland
Format: article
Version: accepted version
Access: open
Online Access: PDF Full Text (PDF, 0.1 MB)
Persistent link: http://urn.fi/urn:nbn:fi-fe2020092976182
Language: English
Published: John Wiley & Sons, 2019
Publish Date: 2020-09-29
Description:

Abstract

Objectives: The aim of this study was to investigate activity‐induced effects from bone geometric properties of the proximal femur in athletic vs nonathletic healthy females by statistically controlling for variation in body size, lower limb isometric, and dynamic muscle strength, and cross‐sectional area of Musculus gluteus maximus.

Methods: The material consists of hip and proximal thigh magnetic resonance images of Finnish female athletes (N = 91) engaged in either high jump, triple jump, soccer, squash, powerlifting, endurance running or swimming, and a group of physically active nonathletic women (N = 20). Cross‐sectional bone geometric properties were calculated for the lesser trochanter, sub‐trochanter, and mid‐shaft of the femur regions. Bone geometric properties were analyzed using a general linear model that included body size, muscle size, and muscle strength as covariates.

Results: Body size and isometric muscle strength were positively associated with bone geometric properties at all three cross‐sectional levels of the femur, while muscle size was positively associated with bone properties only at the femur mid‐shaft. When athletes were compared to nonathletic females, triple jump, soccer, and squash resulted in greater values in all studied cross‐sections; high jump and endurance running resulted in greater values at the femoral mid‐shaft cross‐section; and swimming resulted in lower values at sub‐trochanter and femur mid‐shaft cross‐sections.

Conclusions: Activity effects from ground impact loading were associated with higher bone geometric values, especially at the femur mid‐shaft, but also at lesser and sub‐trochanter cross‐sections. Bone geometric properties along the femur can be used to assess the mechanical stimuli experienced, where ground impact loading seems to be more important than muscle loading.

see all

Series: American journal of human biology
ISSN: 1042-0533
ISSN-E: 1520-6300
ISSN-L: 1042-0533
Volume: 31
Issue: 4
Article number: e23246
DOI: 10.1002/ajhb.23246
OADOI: https://oadoi.org/10.1002/ajhb.23246
Type of Publication: A1 Journal article – refereed
Field of Science: 3111 Biomedicine
616 Other humanities
Subjects:
Funding: This research was funded by the Alfred Kordelin Foundation.
Copyright information: © 2019 Wiley Periodicals, Inc. This is the peer reviewed version of the following article: Niinimäki, S, Narra, N, Härkönen, L, et al. Do bone geometric properties of the proximal femoral diaphysis reflect loading history, muscle properties, or body dimensions? Am J Hum Biol. 2019; 31:e23246, which has been published in final form at https://doi.org/10.1002/ajhb.23246. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving.