Federated learning under channel uncertainty : joint client scheduling and resource allocation |
|
Author: | Wadu, Madhusanka Manimel1; Samarakoon, Sumudu1; Bennis, Mehdi1 |
Organizations: |
1Centre for Wireless Communications (CWC), University of Oulu, Finland |
Format: | article |
Version: | accepted version |
Access: | open |
Online Access: | PDF Full Text (PDF, 0.9 MB) |
Persistent link: | http://urn.fi/urn:nbn:fi-fe2020102687770 |
Language: | English |
Published: |
Institute of Electrical and Electronics Engineers,
2020
|
Publish Date: | 2020-10-26 |
Description: |
AbstractIn this work, we propose a novel joint client scheduling and resource block (RB) allocation policy to minimize the loss of accuracy in federated learning (FL) over wireless compared to a centralized training-based solution, under imperfect channel state information (CSI). First, the problem is cast as a stochastic optimization problem over a predefined training duration and solved using the Lyapunov optimization framework. In order to learn and track the wireless channel, a Gaussian process regression (GPR)-based channel prediction method is leveraged and incorporated into the scheduling decision. The proposed scheduling policies are evaluated via numerical simulations, under both perfect and imperfect CSI. Results show that the proposed method reduces the loss of accuracy up to 25.8% compared to state-of-the-art client scheduling and RB allocation methods. see all
|
Series: |
IEEE Wireless Communications and Networking Conference |
ISSN: | 1525-3511 |
ISSN-E: | 1558-2612 |
ISSN-L: | 1525-3511 |
ISBN: | 978-1-7281-3106-1 |
ISBN Print: | 978-1-7281-3107-8 |
Pages: | 1 - 6 |
DOI: | 10.1109/WCNC45663.2020.9120649 |
OADOI: | https://oadoi.org/10.1109/WCNC45663.2020.9120649 |
Host publication: |
2020 IEEE Wireless Communications and Networking Conference (WCNC) |
Conference: |
IEEE Wireless Communications and Networking Conference |
Type of Publication: |
A4 Article in conference proceedings |
Field of Science: |
213 Electronic, automation and communications engineering, electronics |
Subjects: | |
Funding: |
This research was supported by the Kvantum institute strategic project SAFARI, CARMA, MISSION, NOOR, SMARTER, and the Academy of Finland 6Genesis Flagship project under grant 318927. |
Academy of Finland Grant Number: |
318927 |
Detailed Information: |
318927 (Academy of Finland Funding decision) |
Copyright information: |
© 2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works. |