University of Oulu

M. M. Wadu, S. Samarakoon and M. Bennis, "Federated Learning under Channel Uncertainty: Joint Client Scheduling and Resource Allocation," 2020 IEEE Wireless Communications and Networking Conference (WCNC), Seoul, Korea (South), 2020, pp. 1-6, doi: 10.1109/WCNC45663.2020.9120649

Federated learning under channel uncertainty : joint client scheduling and resource allocation

Saved in:
Author: Wadu, Madhusanka Manimel1; Samarakoon, Sumudu1; Bennis, Mehdi1
Organizations: 1Centre for Wireless Communications (CWC), University of Oulu, Finland
Format: article
Version: accepted version
Access: open
Online Access: PDF Full Text (PDF, 0.9 MB)
Persistent link:
Language: English
Published: Institute of Electrical and Electronics Engineers, 2020
Publish Date: 2020-10-26


In this work, we propose a novel joint client scheduling and resource block (RB) allocation policy to minimize the loss of accuracy in federated learning (FL) over wireless compared to a centralized training-based solution, under imperfect channel state information (CSI). First, the problem is cast as a stochastic optimization problem over a predefined training duration and solved using the Lyapunov optimization framework. In order to learn and track the wireless channel, a Gaussian process regression (GPR)-based channel prediction method is leveraged and incorporated into the scheduling decision. The proposed scheduling policies are evaluated via numerical simulations, under both perfect and imperfect CSI. Results show that the proposed method reduces the loss of accuracy up to 25.8% compared to state-of-the-art client scheduling and RB allocation methods.

see all

Series: IEEE Wireless Communications and Networking Conference
ISSN: 1525-3511
ISSN-E: 1558-2612
ISSN-L: 1525-3511
ISBN: 978-1-7281-3106-1
ISBN Print: 978-1-7281-3107-8
Pages: 1 - 6
DOI: 10.1109/WCNC45663.2020.9120649
Host publication: 2020 IEEE Wireless Communications and Networking Conference (WCNC)
Conference: IEEE Wireless Communications and Networking Conference
Type of Publication: A4 Article in conference proceedings
Field of Science: 213 Electronic, automation and communications engineering, electronics
Funding: This research was supported by the Kvantum institute strategic project SAFARI, CARMA, MISSION, NOOR, SMARTER, and the Academy of Finland 6Genesis Flagship project under grant 318927.
Academy of Finland Grant Number: 318927
Detailed Information: 318927 (Academy of Finland Funding decision)
Copyright information: © 2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.