University of Oulu

A. Elgabli and V. Aggarwal, "FastScan: Robust Low-Complexity Rate Adaptation Algorithm for Video Streaming Over HTTP," in IEEE Transactions on Circuits and Systems for Video Technology, vol. 30, no. 7, pp. 2240-2249, July 2020, doi: 10.1109/TCSVT.2019.2914388

FastScan : robust low-complexity rate adaptation algorithm for video streaming over HTTP

Saved in:
Author: Elgabli, Anis1,2; Aggarwal, Vaneet3,4
Organizations: 1School of Electrical Computer Engineering, Purdue University, West Lafayette, IN 47907 USA
2Center of Wireless Communications, University of Oulu, Oulu, Finland
3School of Industrial Engineering, Purdue University, West Lafayette, IN 47907 USA
4School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN 47907 USA
Format: article
Version: accepted version
Access: open
Online Access: PDF Full Text (PDF, 0.5 MB)
Persistent link: http://urn.fi/urn:nbn:fi-fe2020102787863
Language: English
Published: Institute of Electrical and Electronics Engineers, 2020
Publish Date: 2020-10-27
Description:

Abstract

This paper proposes and evaluates a novel algorithm for streaming video over HTTP. The problem is formulated as a non-convex optimization problem which is constrained by the predicted available bandwidth, chunk deadlines, available video rates, and buffer occupancy. The objective is to optimize a QoE metric that maintains a tradeoff between maximizing the playback rate of every chunk and ensuring fairness among different chunks for the minimum re-buffering time. We propose FastScan, a low complexity algorithm that solves the problem. The online adaptations for dynamic bandwidth environments are proposed with imperfect available bandwidth prediction. The results of experiments driven by variable bit rate (VBR) encoded video, video platform system (dash.js), and cellular bandwidth traces of a public dataset reveal the robustness of the online version of FastScan algorithm and demonstrate its significant performance improvement as compared to the considered state-of-the-art video streaming algorithms. For example, on an experiment conducted over 100 real cellular available bandwidth traces of a public dataset that spans different available bandwidth regimes, our proposed algorithm (FastScan) achieves the minimum re-buffering (stall) time and the maximum average playback rate in every single trace as compared to Bola, Festive, BBA, RB, FastMPC, and Pensieve algorithms.

see all

Series: IEEE transactions on circuits and systems for video technology
ISSN: 1051-8215
ISSN-E: 1558-2205
ISSN-L: 1051-8215
Volume: 30
Issue: 7
Pages: 2240 - 2249
DOI: 10.1109/TCSVT.2019.2914388
OADOI: https://oadoi.org/10.1109/TCSVT.2019.2914388
Type of Publication: A1 Journal article – refereed
Field of Science: 213 Electronic, automation and communications engineering, electronics
Subjects:
Funding: This work was supported in part by the U.S. National Science Foundation under Grant CCF-1527486 and Grant CNS-1618335.
Copyright information: © 2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.