Dynamic orchestration of security services at fog nodes for 5G IoT |
|
Author: | Imrith, Vashish N.1; Ranaweera, Pasika2; Jugurnauth, Rameshwar A.1; |
Organizations: |
1Department of Electrical and Electronics, University of Mauritius, Mauritius 2School of Computer Science, University College Dublin, Ireland 3Centre for Wireless Communications, University of Oulu, Finland |
Format: | article |
Version: | accepted version |
Access: | open |
Online Access: | PDF Full Text (PDF, 0.3 MB) |
Persistent link: | http://urn.fi/urn:nbn:fi-fe2020111690437 |
Language: | English |
Published: |
Institute of Electrical and Electronics Engineers,
2020
|
Publish Date: | 2020-11-16 |
Description: |
AbstractFog Computing is one of the edge computing paradigms that envisages being the proximate processing and storage infrastructure for a multitude of IoT appliances. With its dynamic deployability as a medium level cloud service, fog nodes are enabling heterogeneous service provisioning infrastructure that features scalability, interoperability, and adaptability. Out of the various 5G based services possible with the fog computing platforms, security services are imperative but minimally investigated direct live. Thus, in this research, we are focused on launching security services in a fog node with an architecture capable of provisioning on-demand service requests. As the fog nodes are constrained on resources, our intention is to integrate light-weight virtualization technology such as Docker for forming the service provisioning infrastructure. We managed to launch multiple security instances configured to be Intrusion Detection and Prevention Systems (IDPSs) on the fog infrastructure emulated via a Raspberry Pi-4 device. This environment was tested with multiple network flows to validate its feasibility. In our proposed architecture, orchestration strategies performed by the security orchestrator were stated as guidelines for achieving pragmatic, dynamic orchestration with fog in IoT deployments. The results of this research guarantee the possibility of developing an ambient security service model that facilitates IoT devices with enhanced security. see all
|
Series: |
IEEE International Conference on Communications |
ISSN: | 1550-3607 |
ISSN-E: | 1938-1883 |
ISSN-L: | 1550-3607 |
ISBN: | 978-1-7281-5089-5 |
ISBN Print: | 978-1-7281-5090-1 |
Pages: | 1 - 6 |
DOI: | 10.1109/ICC40277.2020.9149019 |
OADOI: | https://oadoi.org/10.1109/ICC40277.2020.9149019 |
Host publication: |
Proceedings of IEEE International Conference on Communications (ICC) |
Conference: |
IEEE International Conference on Communications |
Type of Publication: |
A4 Article in conference proceedings |
Field of Science: |
213 Electronic, automation and communications engineering, electronics |
Subjects: | |
Funding: |
This work is party supported by European Union in RESPONSE 5G (Grant No: 789658) and Academy of Finland in 6Genesis Flagship (grant no. 318927) projects. |
Academy of Finland Grant Number: |
318927 |
Detailed Information: |
318927 (Academy of Finland Funding decision) |
Copyright information: |
© 2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works. |