University of Oulu

Van Deun, J.; Roux, Q.; Deville, S.; Van Acker, T.; Rappu, P.; Miinalainen, I.; Heino, J.; Vanhaecke, F.; De Geest, B.G.; De Wever, O.; Hendrix, A. Feasibility of Mechanical Extrusion to Coat Nanoparticles with Extracellular Vesicle Membranes. Cells 2020, 9, 1797. https://doi.org/10.3390/cells9081797

Feasibility of mechanical extrusion to coat nanoparticles with extracellular vesicle membranes

Saved in:
Author: Van Deun, Jan1,2; Roux, Quentin1,2; Deville, Sarah1,2;
Organizations: 1Laboratory of Experimental Cancer Research, Department of Human Structure and Repair, Ghent University, 9000 Ghent, Belgium
2Cancer Research Institute Ghent, 9000 Ghent, Belgium
3Department of Analytical Chemistry, Ghent University, 9000 Ghent, Belgium
4Department of Biochemistry, University of Turku, 20500 Turku, Finland
5Biocenter Oulu, Department of Pathology, Oulu University Hospital, University of Oulu, 90220 Oulu, Finland
6Department of Pharmaceutics, Ghent University, 9000 Ghent, Belgium
Format: article
Version: published version
Access: open
Online Access: PDF Full Text (PDF, 2.6 MB)
Persistent link: http://urn.fi/urn:nbn:fi-fe2020120399320
Language: English
Published: Multidisciplinary Digital Publishing Institute, 2020
Publish Date: 2020-12-03
Description:

Abstract

Biomimetic functionalization to confer stealth and targeting properties to nanoparticles is a field of intense study. Extracellular vesicles (EV), sub-micron delivery vehicles for intercellular communication, have unique characteristics for drug delivery. We investigated the top-down functionalization of gold nanoparticles with extracellular vesicle membranes, including both lipids and associated membrane proteins, through mechanical extrusion. EV surface-exposed membrane proteins were confirmed to help avoid unwanted elimination by macrophages, while improving autologous uptake. EV membrane morphology, protein composition and orientation were found to be unaffected by mechanical extrusion. We implemented complementary EV characterization methods, including transmission- and immune-electron microscopy, and nanoparticle tracking analysis, to verify membrane coating, size and zeta potential of the EV membrane-cloaked nanoparticles. While successful EV membrane coating of the gold nanoparticles resulted in lower macrophage uptake, low yield was found to be a significant downside of the extrusion approach. Our data incentivize more research to leverage EV membrane biomimicking as a unique drug delivery approach in the near future.

see all

Series: Cells
ISSN: 2073-4409
ISSN-E: 2073-4409
ISSN-L: 2073-4409
Volume: 9
Issue: 8
Article number: E1797
DOI: 10.3390/cells9081797
OADOI: https://oadoi.org/10.3390/cells9081797
Type of Publication: A1 Journal article – refereed
Field of Science: 1182 Biochemistry, cell and molecular biology
Subjects:
Funding: This research was funded by Fund for Scientific Spearheads of the Ghent University Hospital, Concerted Research Actions from Ghent University, Kom Op Tegen Kanker, the National Cancer Plan, PhD (JVD) and post-doctoral positions (AH) and Krediet aan Navorsers (AH) from Fund for Scientific Research Flanders (FWO), and European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No [722148].
Copyright information: © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
  https://creativecommons.org/licenses/by/4.0/