A search for dark matter in Triangulum II with the MAGIC telescopes |
|
Author: | Acciari, V. A.1; Ansoldi, S.2,3,4; Antonelli, L. A.5; |
Organizations: |
1Astrofis Canarias, E-38200 San Cristobal la Laguna, Spain. 2Univ Udine, I-33100 Udine, Italy. 3INFN Trieste, I-33100 Udine, Italy.
4Kyoto Univ, Dept Phys, Japanese MAGIC Consortium, Kyoto 6068502, Japan.
5Natl Inst Astrophys INAF, I-00136 Rome, Italy. 6Swiss Fed Inst Technol, CH-8093 Zurich, Switzerland. 7Tech Univ Dortmund, D-44221 Dortmund, Germany. 8Univ Zagreb FER, Croatian Consortium, Zagreb 10000, Croatia. 9HBNI, Saha Inst Nucl Phys, 1-AF Bidhannagar,Sect 1, Kolkata 700064, India. 10URCA, Ctr Brasileiro Pesquisas Fis CBPF, BR-22290180 Rio De Janeiro, RJ, Brazil. 11Univ Complutense Madrid, IPARCOS Inst, E-28040 Madrid, Spain. 12Univ Complutense Madrid, EMFTEL Dept, E-28040 Madrid, Spain. 13Univ La Laguna, Dept Astrofis, E-38206 Tenerife, Spain. 14Univ Lodz, Dept Astrophys, PL-90236 Lodz, Poland. 15Univ Siena, I-53100 Siena, Italy. 16INFN Pisa, I-53100 Siena, Italy. 17Deutsch Elektronen Synchrotron DESY, D-15738 Zeuthen, Germany. 18Univ Padua, I-35131 Padua, Italy. 19Ist Nazl Fis Nucl INFN, I-00044 Rome, Italy. 20Max Planck Inst Phys & Astrophys, D-80805 Munich, Germany. 21Barcelona Inst Sci & Technol BIST, Inst Fis Altes Energies IFAE, E-08193 Bellaterra, Barcelona, Spain. 22INFN, I-35131 Padua, Italy. 23Univ Pisa, I-56126 Pisa, Italy. 24INFN Pisa, I-56126 Pisa, Italy. 25A Alikhanyan Natl Lab, Armenian Consortium ICRANet Armenia NAS RA, Yerevan, Armenia. 26Ctr Invest Energet Medioambientales & Tecnol, E-28040 Madrid, Spain. 27Port Informacio Cient PIC, E-08193 Bellaterra, Spain. 28Univ Rijeka, Dept Phys, Croatian Consortium, Rijeka 51000, Croatia. 29Univ Wurzburg, D-97074 Wurzburg, Germany. 30Univ Turku, Finnish MAGIC Consortium, Finnish Ctr Astron ESO FINCA, FI-20014 Turku, Finland. 31Univ Oulu, Astron Res Unit, Finnish MAGIC Consortium, FI-90014 Oulu, Finland. 32Univ Autonoma Barcelona, Dept Fis, E-08193 Bellaterra, Spain. 33Univ Autonoma Barcelona, CERES IEEC, E-08193 Bellaterra, Spain. 34Univ Tokyo, Japanese MAGIC Consortium ICRR, Chiba 2778582, Japan. 35Univ Osijek, Croatian Consortium, Osijek 31000, Croatia. 36RIKEN, Japanese MAGIC Consortium, Wako, Saitama 3510198, Japan. 37Tokai Univ, Japanese MAGIC Consortium, Isehara, Kanagawa 2591292, Japan. 38Univ Split FESB, Croatian Consortium, Split 21000, Croatia. 39Univ Trieste, Dipartimento Fis, I-34127 Trieste, Italy. 40Bulgarian Acad Sci, Inst Nucl Res & Nucl Energy, BG-1784 Sofia, Bulgaria. 41Univ Barcelona, ICCUB, IEEC UB, E-08028 Barcelona, Spain. 42INAF Trieste, Trieste, Italy. 43Univ Bologna, Dept Phys & Astron, Bologna, Italy. |
Format: | article |
Version: | accepted version |
Access: | open |
Online Access: | PDF Full Text (PDF, 0.8 MB) |
Persistent link: | http://urn.fi/urn:nbn:fi-fe2020120499493 |
Language: | English |
Published: |
Elsevier,
2020
|
Publish Date: | 2022-03-18 |
Description: |
AbstractWe present the first results from very-high-energy observations of the dwarf spheroidal satellite candidate Triangulum II with the MAGIC telescopes from 62.4 h of good-quality data taken between August 2016 and August 2017. We find no gamma-ray excess in the direction of Triangulum II, and upper limits on both the differential and integral gamma-ray flux are presented. Currently, the kinematics of Triangulum II are affected by large uncertainties leading to a bias in the determination of the properties of its dark matter halo. Using a scaling relation between the annihilation J-factor and heliocentric distance of well-known dwarf spheroidal galaxies, we estimate an annihilation J-factor for Triangulum II for WIMP dark matter of log [Jann (0.5°) / GeV² cm⁻⁵] = 19.35 ± 0.37. We also derive a dark matter density profile for the object relying on results from resolved simulations of Milky Way sized dark matter halos. We obtain 95% confidence-level limits on the thermally averaged annihilation cross section for WIMP annihilation into various Standard Model channels. The most stringent limits are obtained in the τ⁻τ⁺ final state, where a cross section for annihilation down to 〈σannv〉 = 3.05 × 10⁻²⁴ cm³ s⁻¹ is excluded. see all
|
Series: |
Physics of the dark universe |
ISSN: | 2212-6864 |
ISSN-E: | 2212-6864 |
ISSN-L: | 2212-6864 |
Volume: | 28 |
Article number: | 100529 |
DOI: | 10.1016/j.dark.2020.100529 |
OADOI: | https://oadoi.org/10.1016/j.dark.2020.100529 |
Type of Publication: |
A1 Journal article – refereed |
Field of Science: |
115 Astronomy and space science |
Subjects: | |
Funding: |
The financial support of the German BMBF and MPG, Germany, the Italian INFN and INAF, Italy, the Swiss National Fund SNF, the ERDF under the Spanish MINECO (FPA2017-87859-P, FPA2017-85668-P, FPA2017-82729-C6-2-R, FPA2017-82729-C6-6-R, FPA2017-82729-C6-5-R, AYA2015-71042-P, AYA2016-76012-C3-1-P, ESP2017-87055-C2-2-P, FPA2017-90566-REDC), the Indian Department of Atomic Energy, the Japanese JSPS, Japan and MEXT, Japan, the Bulgarian Ministry of Education and Science, National RI Roadmap Project DO1-153/28.08.2018 and the Academy of Finland grant nr. 320045 is gratefully acknowledged. This work was also supported by the Spanish Centro de Excelencia “Severo Ochoa” SEV-2016-0588 and SEV-2015-0548, and Unidad de Excelencia “María de Maeztu” MDM-2014-0369, by the Croatian Science Foundation (HrZZ) Project IP-2016-06-9782 and the University of Rijeka, Croatia Project 13.12.1.3.02, by the DFG, Germany Collaborative Research Centers SFB823/C4 and SFB876/C3, the Polish National Research Centre, Polland grant UMO-2016/22/M/ST9/00382 and by the Brazilian MCTIC, CNPq, Brazil and FAPERJ, Brazil. |
Copyright information: |
© 2020. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/. |