University of Oulu

Osipov, V.Y., Shakhov, F.M., Bogdanov, K.V. et al. High-Quality Green-Emitting Nanodiamonds Fabricated by HPHT Sintering of Polycrystalline Shockwave Diamonds. Nanoscale Res Lett 15, 209 (2020). https://doi.org/10.1186/s11671-020-03433-7

High-quality green-emitting nanodiamonds fabricated by HPHT sintering of polycrystalline shockwave diamonds

Saved in:
Author: Osipov, Vladimir Yu.1; Shakhov, Fedor M.1; Bogdanov, Kirill V.2;
Organizations: 1Ioffe Institute, Polytechnicheskaya 26, St. Petersburg, Russia 194021
2ITMO University, Kronverksky 47, St. Petersburg, Russia 197101
3Department of Chemical Science and Technology, Hosei University, 3‑7‑2, Kajino, Koganei, Tokyo 184‑8584, Japan
4Faculty of Engineering, Shinshu University, 4‑17‑1 Wakasato, Nagano 380‑8553, Japan
5Université Paris-Saclay, CNRS, ENS Paris- Saclay, CentraleSupélec, LuMIn, 91190 Gif‑sur‑Yvette, France
6College of Engineering Mathematics and Physical Sciences, University of Exeter, Exeter EX4 4QF, UK
7Optoelectronics and Measurement Techniques Research Unit, University of Oulu, 90570 Oulu, Finland
8Microdiamant AG, Kreuzlingerstrasse 1, 8574 Lengwil, Switzerland
Format: article
Version: published version
Access: open
Online Access: PDF Full Text (PDF, 3.9 MB)
Persistent link: http://urn.fi/urn:nbn:fi-fe20201210100250
Language: English
Published: Springer Nature, 2020
Publish Date: 2020-12-10
Description:

Abstract

We demonstrate a high-pressure, high-temperature sintering technique to form nitrogen-vacancy-nitrogen centres in nanodiamonds. Polycrystalline diamond nanoparticle precursors, with mean size of 25 nm, are produced by the shock wave from an explosion. These nanoparticles are sintered in the presence of ethanol, at a pressure of 7 GPa and temperature of 1300 °C, to produce substantially larger (3–4 times) diamond crystallites. The recorded spectral properties demonstrate the improved crystalline quality. The types of defects present are also observed to change; the characteristic spectral features of nitrogen-vacancy and silicon-vacancy centres present for the precursor material disappear. Two new characteristic features appear: (1) paramagnetic substitutional nitrogen (P1 centres with spin ½) with an electron paramagnetic resonance characteristic triplet hyperfine structure due to the I = 1 magnetic moment of the nitrogen nuclear spin and (2) the green spectral photoluminescence signature of the nitrogen-vacancy-nitrogen centres. This production method is a strong alternative to conventional high-energy particle beam irradiation. It can be used to easily produce purely green fluorescing nanodiamonds with advantageous properties for optical biolabelling applications.

see all

Series: Nanoscale research letters
ISSN: 1931-7573
ISSN-E: 1556-276X
ISSN-L: 1931-7573
Volume: 15
Issue: 1
Article number: 209
DOI: 10.1186/s11671-020-03433-7
OADOI: https://oadoi.org/10.1186/s11671-020-03433-7
Type of Publication: A1 Journal article – refereed
Field of Science: 221 Nanotechnology
213 Electronic, automation and communications engineering, electronics
Subjects:
Funding: VO and FS acknowledge the support of Ioffe Institute (Project 0040-2014-0013). AB and BH acknowledge support from The Engineering and Physical Sciences Research Council (EPSRC) of the United Kingdom via Grant No. EP/N035569/1, and also the EPSRC Centre for Doctoral Training in Electromagnetic Metamaterials (Grant No. EP/L015331/1). The funding bodies played no role in: the design of the study; collection, analysis, and interpretation of the data; and writing the manuscript.
Copyright information: © The Authors 2020. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
  https://creativecommons.org/licenses/by/4.0/