University of Oulu

Møller, A.P., Balbontín, J., Dhondt, A.A., Adriaensen, F., Artemyev, A., Bańbura, J., Barba, E., Biard, C., Blondel, J., Bouvier, J.‐C., Camprodon, J., Cecere, F., Charter, M., Cichoń, M., Cusimano, C., Dubiec, A., Doligez, B., Eens, M., Eeva, T., Ferns, P.N., Forsman, J.T., Goldshtein, A., Goodenough, A.E., Gosler, A.G., Gustafsson, L., Harnist, I., Hartley, I.R., Heeb, P., Hinsley, S.A., Jacob, S., Järvinen, A., Juškaitis, R., Korpimäki, E., Krams, I., Laaksonen, T., Leclercq, B., Lehikoinen, E., Loukola, O., Mainwaring, M.C., Mänd, R., Massa, B., Matthysen, E., Mazgajski, T.D., Merino, S., Mitrus, C., Mönkkönen, M., Nager, R.G., Nilsson, J.‐Å., Nilsson, S.G., Norte, A.C., von Numers, M., Orell, M., Pimentel, C.S., Pinxten, R., Priedniece, I., Remeš, V., Richner, H., Robles, H., Rytkönen, S., Senar, J.C., Seppänen, J.T., da Silva, L.P., Slagsvold, T., Solonen, T., Sorace, A., Stenning, M.J., Török, J., Tryjanowski, P., van Noordwijk, A.J., Walankiewicz, W. and Lambrechts, M.M. (2020), Interaction of climate change with effects of conspecific and heterospecific density on reproduction. Oikos, 129: 1807-1819. https://doi.org/10.1111/oik.07305

Interaction of climate change with effects of conspecific and heterospecific density on reproduction

Saved in:
Author: Moller, Anders Pape1,2; Balbontin, Javier3; Dhondt, Andre A.4;
Organizations: 1Univ Paris Saclay, Ecol Systemat Evolut, CNRS, AgroParisTech, Orsay, France.
2Beijing Normal Univ, Coll Life Sci, Minist Educ, Key Lab Biodivers Sci & Ecol Engn, Beijing, Peoples R China.
3Fac Biol, Depto Zool, Seville, Spain.
4Cornell Univ, Lab Ornithol, Ithaca, NY USA.
5Univ Antwerp, Dept Biol, Antwerp, Belgium.
6Russian Acad Sci, Inst Biol, Karelian Res Ctr, Moscow, Russia.
7Univ Lodz, Dept Expt Zool & Evolutionary Biol, Lodz, Poland.
8Univ Valencia, Terr Vertebrates Res Unit Cavanilles, Inst Biodivers & Evolutionary Biol, Paterna, Spain.
9Sorbonne Univ, UPEC, Inst Ecol & Sci Environm Paris, Paris 7,CNRS,INRA,IRD,IEES Paris, Paris, France.
10CEFE UMR 5175, Ctr Ecol Fonct & Evolut, Montpellier, France.
11INRAE, Plantes Syst Culture Horticoles, UR 1115, 1115 Avignon, France.
12Ctr Tecnol Forestal Catalunya, Area Biodiversitat, Grp Biol Conservacio, Solsona, Spain.
13Univ Haifa, Shamir Res Inst, Haifa, Israel.
14Univ Haifa, Dept Evolutionary & Environm Biol, Haifa, Israel.
15Jagiellonian Univ, Inst Environm Sci, Krakow, Poland.
16Stn Ornitlg Aegithalos, Palermo, Italy.
17Polish Acad Sci, Museum & Inst Zool, Warsaw, Poland.
18Univ Turku, Dept Biol, Turku, Finland.
19Cardiff Univ, Sch Biosci, Cardiff, S Glam, Wales.
20Univ Oulu, Nat Resources Inst, Oulu, Finland.
21Tel Aviv Univ, Tel Aviv, Israel.
22Univ Gloucestershire, Dept Nat & Social Sci, Cheltenham, Glos, England.
23Edward Grey Inst Field Ornithol, Dept Zool, Oxford, England.
24Edward Grey Inst Field Ornithol, Inst Human Sci, Oxford, England.
25Uppsala Univ, Dept Ecol & Genet Anim Ecol, Uppsala, Sweden.
26Uppsala Univ, Evolutionary Biol Ctr, Uppsala, Sweden.
27Univ Lancaster, Lancaster Environm Ctr, Lancaster, England.
28UPS Toulouse 3, Lab Evolut & Divers Biol, Toulouse, France.
29CEH Wallingford, Crowmarsh Gifford, Maclean Bldg, Wallingford, England.
30Stn Ecol Theor Expt, Moulis, France.
31Univ Helsinki, Kilpisjarvi Biological Stn, Helsinki, Finland.
32Nat Res Ctr, Inst Ecol, Vilnius, Lithuania.
33Univ Tartu, Inst Ecol & Earth Sci, Tartu, Estonia.
34Univ Oulu, Dept Ecol & Genet, Oulu, Finland.
35Univ Montana, Div Biol Sci, Missoula, MT USA.
36Stn Ornitol, Palermo, Italy.
37Agencia Estatal Consejo Super Invest Cient, CSIC, Dept Ecol Evolut, Museo Nacl Ciencias Nat, Madrid, Spain.
38Wroclaw Univ Environm & Life Sci, Dept Vertebrate Ecol & Palaeontol, Wroclaw, Poland.
39Univ Jyvaskyla, Dept Biol & Environm Sci, Jyvaskyla, Finland.
40Univ Glasgow, Inst Biodivers Anim Hlth & Comparat Med, Glasgow, Scotland.
41Lund Univ, Dept Biol, Lund, Sweden.
42Univ Coimbra, Dept Life Sci, MARE Marine & Environm Sci Ctr, Coimbra, Coimbra, Portugal.
43Abo Akad Univ, Environm & Marine Biol, Turku, Finland.
44Univ Lisbon, Ctr Estudos Florestais, Inst Super Agron, Lisbon, Portugal.
45Behav Ecol & Ecophysiol Res Grp, Dept Biol, Antwerp, Belgium.
46Univ Antwerp, Res Unit Didact, Fac Social Sci, Antwerp, Belgium.
47Latvian Fund Nat, Riga, Latvia.
48Palacky Univ, Dept Zool, Lab Ornithol, Olomouc, Czech Republic.
49Univ Bern, IEE, Bern, Switzerland.
50Univ A Coruna, Evolutionary Ecol Grp GIBE, Falculty Sci, La Coruna, Spain.
51Univ Antwerp, Dept Biol, Evolutionary Ecol Grp EVECO, Antwerp, Belgium.
52Museu Ciencies Nat Barcelona, Unidad Ecol Evolut & Conducta, Barcelona, Spain.
53Univ Porto, Res Ctr Biodivers & Genet Resources, CIBIO InBIO, Vairao, Portugal.
54Univ Oslo, Dept Biosci, Oslo, Oslo, Norway.
55Luontotutkimus Solonen Oy, Helsinki, Finland.
56SROPU, Rome, Italy.
57Univ Sussex, Sch Life Sci, Sussex, England.
58ELTE Eotv Lorand Univ, Dept Systemat Zool, Budapest, Hungary.
59Poznan Univ Life Sci, Inst Zool, Poznan, Poland.
60Netherlands Inst Ecol, NIOO KNAW, Wageningen, Netherlands.
61Univ Social & Med Sci Warsaw, Warsaw, Poland.
62CEFE, UMR 5175, Campus CNRS, Montpellier, France.
Format: article
Version: accepted version
Access: embargoed
Persistent link: http://urn.fi/urn:nbn:fi-fe202101071260
Language: English
Published: John Wiley & Sons, 2020
Publish Date: 2021-08-18
Description:

Abstract

We studied the relationship between temperature and the coexistence of great tit Parus major and blue tit Cyanistes caeruleus, breeding in 75 study plots across Europe and North Africa. We expected an advance in laying date and a reduction in clutch size during warmer springs as a general response to climate warming and a delay in laying date and a reduction in clutch size during warmer winters due to density‐dependent effects. As expected, as spring temperature increases laying date advances and as winter temperature increases clutch size is reduced in both species. Density of great tit affected the relationship between winter temperature and laying date in great and blue tit. Specifically, as density of great tit increased and temperature in winter increased both species started to reproduce later. Density of blue tit affected the relationship between spring temperature and blue and great tit laying date. Thus, both species start to reproduce earlier with increasing spring temperature as density of blue tit increases, which was not an expected outcome, since we expected that increasing spring temperature should advance laying date, while increasing density should delay it cancelling each other out. Climate warming and its interaction with density affects clutch size of great tits but not of blue tits. As predicted, great tit clutch size is reduced more with density of blue tits as temperature in winter increases. The relationship between spring temperature and density on clutch size of great tits depends on whether the increase is in density of great tit or blue tit. Therefore, an increase in temperature negatively affected the coexistence of blue and great tits differently in both species. Thus, blue tit clutch size was unaffected by the interaction effect of density with temperature, while great tit clutch size was affected in multiple ways by these interactions terms.

see all

Series: Oikos
ISSN: 0030-1299
ISSN-E: 1600-0706
ISSN-L: 0030-1299
Volume: 129
Issue: 12
Pages: 1807 - 1819
DOI: 10.1111/oik.07305
OADOI: https://oadoi.org/10.1111/oik.07305
Type of Publication: A1 Journal article – refereed
Field of Science: 1181 Ecology, evolutionary biology
Subjects:
Funding: A. Artemyev acknowledges funding by IB KRC RAS no. 0218‐2019‐0080 and T. Eeva acknowledges funding by the Academy of Finland (project 265859). This study was funded by research project CGL‐2016‐79568‐C3‐3‐P (to J. C. Senar), from the Ministry of Economy and Competitivity, Spanish Research Council.
Dataset Reference: Data are available from the Dryad Digital Repository: <http://doi.org/10.5061/dryad.sbcc2fr4b> (Møller et al. 2020).
  http://dx.doi.org/10.5061/dryad.sbcc2fr4b
Copyright information: © 2020 Nordic Society Oikos. Published by John Wiley & Sons Ltd. This is the peer reviewed version of the following article: Møller, A.P., Balbontín, J., Dhondt, A.A., Adriaensen, F., Artemyev, A., Bańbura, J., Barba, E., Biard, C., Blondel, J., Bouvier, J.‐C., Camprodon, J., Cecere, F., Charter, M., Cichoń, M., Cusimano, C., Dubiec, A., Doligez, B., Eens, M., Eeva, T., Ferns, P.N., Forsman, J.T., Goldshtein, A., Goodenough, A.E., Gosler, A.G., Gustafsson, L., Harnist, I., Hartley, I.R., Heeb, P., Hinsley, S.A., Jacob, S., Järvinen, A., Juškaitis, R., Korpimäki, E., Krams, I., Laaksonen, T., Leclercq, B., Lehikoinen, E., Loukola, O., Mainwaring, M.C., Mänd, R., Massa, B., Matthysen, E., Mazgajski, T.D., Merino, S., Mitrus, C., Mönkkönen, M., Nager, R.G., Nilsson, J.‐Å., Nilsson, S.G., Norte, A.C., von Numers, M., Orell, M., Pimentel, C.S., Pinxten, R., Priedniece, I., Remeš, V., Richner, H., Robles, H., Rytkönen, S., Senar, J.C., Seppänen, J.T., da Silva, L.P., Slagsvold, T., Solonen, T., Sorace, A., Stenning, M.J., Török, J., Tryjanowski, P., van Noordwijk, A.J., Walankiewicz, W. and Lambrechts, M.M. (2020), Interaction of climate change with effects of conspecific and heterospecific density on reproduction. Oikos, 129: 1807-1819, which has been published in final form at https://doi.org/10.1111/oik.07305. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving.