University of Oulu

Leinonen, P. H.; Salmela, M. J.; Greenham, K.; McClung, C. R.; Willis, J. H. (2020) Populations Are Differentiated in Biological Rhythms without Explicit Elevational Clines in the Plant Mimulus laciniatus. Journal of Biological Rhythms 35(5), 452-464,

Populations are differentiated in biological rhythms without explicit elevational clines in the plant Mimulus laciniatus

Saved in:
Author: Leinonen, Päivi H.1,2; Salmela, Matti J.3; Greenham, Kathleen4;
Organizations: 1Department of Ecology and Genetics, University of Oulu, Oulu, Finland
2Department of Biology, Duke University, Durham, North Carolina, USA
3Natural Resources Institute Finland (Luke), Helsinki, Finland
4Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire, USA
Format: article
Version: published version
Access: open
Online Access: PDF Full Text (PDF, 0.6 MB)
Persistent link:
Language: English
Published: SAGE Publications, 2020
Publish Date: 2021-01-19


Environmental variation along an elevational gradient can yield phenotypic differentiation resulting from varying selection pressures on plant traits related to seasonal responses. Thus, genetic clines can evolve in a suite of traits, including the circadian clock, that drives daily cycling in varied traits and that shares its genetic background with adaptation to seasonality. We used populations of annual Mimulus laciniatus from different elevations in the Sierra Nevada in California to explore among-population differentiation in the circadian clock, flowering responses to photoperiod, and phenological traits (days to cotyledon emergence, days to flowering, and days to seed ripening) in controlled common-garden conditions. Further, we examined correlations of these traits with environmental variables related to temperature and precipitation. We observed that the circadian period in leaf movement was differentiated among populations sampled within about 100 km, with population means varying by 1.6 h. Significant local genetic variation occurred within 2 populations in which circadian period among families varied by up to 1.8 h. Replicated treatments with variable ecologically relevant photoperiods revealed marked population differentiation in critical day length for flowering that ranged from 11.0 to 14.1 h, corresponding to the time period between late February and mid-May in the wild. Flowering time varied among populations in a 14-h photoperiod. Regardless of this substantial population-level diversity, obvious linear clinality in trait variability across elevations could not be determined based on our genotypic sample; it is possible that more complex spatial patterns of variation arise in complex terrains such as those in the Sierra Nevada. Moreover, we did not find statistically significant bivariate correlations between population means of different traits. Our research contributes to the understanding of genetic variation in the circadian clock and in seasonal responses in natural populations, highlighting the need for more comprehensive investigations on the association between the clock and other adaptive traits in plants.

see all

Series: Journal of biological rhythms
ISSN: 0748-7304
ISSN-E: 1552-4531
ISSN-L: 0748-7304
Volume: 35
Issue: 5
Pages: 452 - 464
DOI: 10.1177/0748730420936408
Type of Publication: A1 Journal article – refereed
Field of Science: 1183 Plant biology, microbiology, virology
Funding: The authors disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: Academy of Finland Research Council for Biosciences and Environment (266201) to P.H.L., the Emil Aaltonen Foundation to M.J.S., National Science Foundation (IOS-1202779) to K.G., National Science Foundation (IOS 1547796) to C.R.M., and National Science Foundation LiT (IOS-1024966) to J.H.W.
Academy of Finland Grant Number: 266201
Detailed Information: 266201 (Academy of Finland Funding decision)
Copyright information: © 2020 The Author(s). This article is distributed under the terms of the Creative Commons Attribution 4.0 License ( which permits any use, reproduction and distribution of the work without further permission provided the original work is attributed as specified on the SAGE and Open Access page (