Joint sub-carrier and power allocation for efficient communication of cellular UAVs |
|
Author: | Hellaoui, Hamed1; Bagaa, Miloud1; Chelli, Ali2; |
Organizations: |
1Department of Communications and Networking, Aalto University, Espoo 02150, Finland 2Faculty of Engineering and Science, University of Agder, 4898 Grimstad, Norway 3Centre for Wireless Communications (CWC), University of Oulu, Oulu 90570, Finland
4Department of Computer and Information Security, Sejong University, Seoul 05006, South Korea
|
Format: | article |
Version: | accepted version |
Access: | open |
Online Access: | PDF Full Text (PDF, 0.5 MB) |
Persistent link: | http://urn.fi/urn:nbn:fi-fe202101252570 |
Language: | English |
Published: |
Institute of Electrical and Electronics Engineers,
2020
|
Publish Date: | 2021-01-25 |
Description: |
AbstractCellular networks are expected to be the main communication infrastructure to support the expanding applications of Unmanned Aerial Vehicles (UAVs). As these networks are deployed to serve ground User Equipment (UEs), several issues need to be addressed to enhance cellular UAVs’ services. In this article, we propose a realistic communication model on the downlink, and we show that the Quality of Service (QoS) for the users is affected by the number of interfering BSs and the impact they cause. The joint problem of sub-carrier and power allocation is therefore addressed. Given its complexity, which is known to be NP-hard, we introduce a solution based on game theory. First, we argue that separating between UAVs and UEs in terms of the assigned sub-carriers reduces the interference impact on the users. This is materialized through a matching game. Moreover, in order to boost the partition, we propose a coalitional game that considers the outcome of the first one and enables users to change their coalitions and enhance their QoS. Furthermore, a power optimization solution is introduced, which is considered in the two games. Performance evaluations are conducted, and the obtained results demonstrate the effectiveness of the propositions. see all
|
Series: |
IEEE transactions on wireless communications |
ISSN: | 1536-1276 |
ISSN-E: | 1558-2248 |
ISSN-L: | 1536-1276 |
Volume: | 19 |
Issue: | 12 |
Pages: | 8287 - 8302 |
DOI: | 10.1109/TWC.2020.3021252 |
OADOI: | https://oadoi.org/10.1109/TWC.2020.3021252 |
Type of Publication: |
A1 Journal article – refereed |
Field of Science: |
213 Electronic, automation and communications engineering, electronics |
Subjects: | |
Funding: |
This work was partially supported by the European Union’s Horizon 2020bbResearch and Innovation Program through the 5G!Drones Project under Grant No. 857031, by the Academy of Finland 6Genesis project under Grant No. 318927, and by the Academy of Finland CSN project under Grant No. 311654. |
EU Grant Number: |
(857031) 5G!Drones - Unmanned Aerial Vehicle Vertical Applications’ Trials Leveraging Advanced 5G Facilities |
Academy of Finland Grant Number: |
318927 311654 |
Detailed Information: |
318927 (Academy of Finland Funding decision) 311654 (Academy of Finland Funding decision) |
Copyright information: |
© 2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works. |