University of Oulu

Jia, J., Kero, A., Kalakoski, N., Szeląg, M. E., and Verronen, P. T.: Is there a direct solar proton impact on lower-stratospheric ozone?, Atmos. Chem. Phys., 20, 14969–14982, https://doi.org/10.5194/acp-20-14969-2020, 2020.

Is there a direct solar proton impact on lower-stratospheric ozone?

Saved in:
Author: Jia, Jia1; Kero, Antti1; Kalakoski, Niilo2;
Organizations: 1Sodankylä Geophysical Observatory, University of Oulu, Sodankylä, Finland
2Space and Earth Observation Centre, Finnish Meteorological Institute, Helsinki, Finland
Format: article
Version: published version
Access: open
Online Access: PDF Full Text (PDF, 15.7 MB)
Persistent link: http://urn.fi/urn:nbn:fi-fe202102043709
Language: English
Published: Copernicus Publications, 2020
Publish Date: 2021-02-04
Description:

Abstract

We investigate Arctic polar atmospheric ozone responses to solar proton events (SPEs) using MLS (Microwave Limb Sounder) satellite measurements (2004–now) and WACCM-D (Whole Atmosphere Community Climate Model) simulations (1989–2012). Special focus is on lower-stratospheric (10–30 km) ozone depletion that has been proposed earlier based on superposed epoch analysis (SEA) of ozonesonde anomalies (up to 10 % ozone decrease at ∼ 20 km). SEA of the satellite dataset provides no solid evidence of any average SPE impact on the lower-stratospheric ozone, although at the mesospheric altitudes a statistically significant ozone depletion is present. In the individual case studies, we find only one potential case (January 2005) in which the lower-stratospheric ozone level was significantly decreased after the SPE onset (in both model simulation and MLS observation data). However, similar decreases could not be identified in other SPEs of similar or larger magnitude. Due to the input proton energy threshold of > 300 MeV, the WACCM-D model can only detect direct proton effects above 25 km, and simulation results before the Aura MLS era indicate no significant effect on the lower-stratospheric ozone. However, we find a very good overall consistency between WACCM-D simulations and MLS observations of SPE-driven ozone anomalies both on average and for the individual cases including January 2005.

see all

Series: Atmospheric chemistry and physics
ISSN: 1680-7316
ISSN-E: 1680-7324
ISSN-L: 1680-7316
Volume: 20
Issue: 23
Pages: 14969 - 14982
DOI: 10.5194/acp-20-14969-2020
OADOI: https://oadoi.org/10.5194/acp-20-14969-2020
Type of Publication: A1 Journal article – refereed
Field of Science: 115 Astronomy and space science
Subjects:
Funding: This research has been supported by the Kvantum Institute for the Mesospheric Monitoring of Ozone (MeMO) project.
Copyright information: © Author(s) 2020. This work is distributed underthe Creative Commons Attribution 4.0 License.
  https://creativecommons.org/licenses/by/4.0/