University of Oulu

A. I. Perera, K. B. S. Manosha, N. Rajatheva and M. Latva-aho, "An Initial Access Optimization Algorithm for millimeter Wave 5G NR Networks," 2020 IEEE 91st Vehicular Technology Conference (VTC2020-Spring), Antwerp, Belgium, 2020, pp. 1-6, doi: 10.1109/VTC2020-Spring48590.2020.9128625

An initial access optimization algorithm for millimeter wave 5G NR networks

Saved in:
Author: Perera, A. Indika1; Manosha, K. B. Shashika1; Rajatheva, Nandana1;
Organizations: 1Centre for Wireless Communications, University of Oulu, Finland
Format: article
Version: accepted version
Access: open
Online Access: PDF Full Text (PDF, 0.4 MB)
Persistent link: http://urn.fi/urn:nbn:fi-fe202102185273
Language: English
Published: Institute of Electrical and Electronics Engineers, 2020
Publish Date: 2021-02-18
Description:

Abstract

The millimeter wave (mmWave) communication uses directional antennas. Hence, achieving fine alignment of transmit and receive beams at the initial access phase is quite challenging and time-consuming. In this paper, we provide a dynamic-weight based beam sweeping direction and synchronization signal block (SSB) allocation algorithm to optimize the cell search of the initial access in mmWave 5G NR networks. The number of SSBs transmitted in each beam sweeping direction depends on previously learned experience which is based on the number of detected UEs (user equipment) per SSB for each sweeping direction. Overall, numerical simulation results indicate that the proposed algorithm is shown to be capable of detecting more users with a lower misdetection probability. Furthermore, it is possible to achieve the same performance with a smaller number of dynamic resource (i.e., SSB) allocation, compared to constant resource allocation.

see all

Series: IEEE Vehicular Technology Conference
ISSN: 1090-3038
ISSN-L: 1090-3038
ISBN: 978-1-7281-5207-3
ISBN Print: 978-1-7281-4053-7
Article number: 9128625
DOI: 10.1109/VTC2020-Spring48590.2020.9128625
OADOI: https://oadoi.org/10.1109/VTC2020-Spring48590.2020.9128625
Host publication: 91st IEEE Vehicular Technology Conference, VTC Spring 2020
Conference: IEEE Vehicular Technology Conference
Type of Publication: A4 Article in conference proceedings
Field of Science: 213 Electronic, automation and communications engineering, electronics
Subjects:
SSB
UPA
Copyright information: © 2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.