Data-driven predictive scheduling in ultra-reliable low-latency industrial IoT : a generative adversarial network approach |
|
Author: | Liu, Chen-Feng1; Bennis, Mehdi1 |
Organizations: |
1Centre for Wireless Communications, University of Oulu, Finland |
Format: | article |
Version: | accepted version |
Access: | open |
Online Access: | PDF Full Text (PDF, 0.6 MB) |
Persistent link: | http://urn.fi/urn:nbn:fi-fe202102185297 |
Language: | English |
Published: |
Institute of Electrical and Electronics Engineers,
2020
|
Publish Date: | 2021-02-18 |
Description: |
AbstractTo date, model-based reliable communication with low latency is of paramount importance for time-critical wireless control systems. In this work, we study the downlink (DL) controller-to-actuator scheduling problem in a wireless industrial network such that the outage probability is minimized. In contrast to the existing literature based on well-known stationary fading channel models, we assume an arbitrary and unknown channel fading model, which is available only via samples. To overcome the issue of limited data samples, we invoke the generative adversarial network framework and propose an online data-driven approach to jointly schedule the DL transmissions and learn the channel distributions in an online manner. Numerical results show that the proposed approach can effectively learn any arbitrary channel distribution and further achieve the optimal performance by using the predicted outage probability. see all
|
Series: |
IEEE International Workshop on Signal Processing Advances in Wireless Communications |
ISSN: | 2325-3789 |
ISSN-L: | 2325-3789 |
ISBN: | 978-1-7281-5478-7 |
ISBN Print: | 978-1-7281-5479-4 |
Article number: | 9154307 |
DOI: | 10.1109/SPAWC48557.2020.9154307 |
OADOI: | https://oadoi.org/10.1109/SPAWC48557.2020.9154307 |
Host publication: |
21st IEEE International Workshop on Signal Processing Advances in Wireless Communications, SPAWC 2020 |
Conference: |
IEEE International Workshop on Signal Processing Advances in Wireless Communications |
Type of Publication: |
A4 Article in conference proceedings |
Field of Science: |
213 Electronic, automation and communications engineering, electronics |
Subjects: | |
Funding: |
This research was supported by the Academy of Finland project CARMA, the Academy of Finland project MISSION, the Academy of Finland project SMARTER, and the Nokia Bell-Labs project ELLIS. |
Copyright information: |
© 2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works. |