University of Oulu

Q. Zhang, W. Saad and M. Bennis, "Distributional Reinforcement Learning for mmWave Communications with Intelligent Reflectors on a UAV," GLOBECOM 2020 - 2020 IEEE Global Communications Conference, Taipei, Taiwan, 2020, pp. 1-6, doi: 10.1109/GLOBECOM42002.2020.9348040

Distributional reinforcement learning for mmWave communications with intelligent reflectors on a UAV

Saved in:
Author: Zhang, Qianqian1; Saad, Walid1; Bennis, Mehdi2
Organizations: 1Bradley Department of Electrical and Computer Engineering, Virginia Tech, VA, USA
2Centre for Wireless Communications, University of Oulu, Finland
Format: article
Version: accepted version
Access: open
Online Access: PDF Full Text (PDF, 0.3 MB)
Persistent link: http://urn.fi/urn:nbn:fi-fe202102255937
Language: English
Published: Institute of Electrical and Electronics Engineers, 2020
Publish Date: 2021-02-25
Description:

Abstract

In this paper, a novel communication framework that uses an unmanned aerial vehicle (UAV)-carried intelligent reflector (IR) is proposed to enhance multi-user downlink transmissions over millimeter wave (mmWave) frequencies. In order to maximize the downlink sum-rate, the optimal precoding matrix (at the base station) and reflection coefficient (at the IR) are jointly derived. Next, to address the uncertainty of mmWave channels and maintain line-of-sight links in a realtime manner, a distributional reinforcement learning approach, based on quantile regression optimization, is proposed to learn the propagation environment of mmWave communications, and, then, optimize the location of the UAV-IR so as to maximize the long-term downlink communication capacity. Simulation results show that the proposed learning-based deployment of the UAV-IR yields a significant advantage, compared to a non-learning UAV-IR, a static IR, and a direct transmission schemes, in terms of the average data rate and the achievable line-of-sight probability of downlink mmWave communications.

see all

Series: IEEE Global Communications Conference
ISSN: 2334-0983
ISSN-E: 2576-6813
ISSN-L: 2334-0983
ISBN: 978-1-7281-8298-8
ISBN Print: 978-1-7281-8299-5
Article number: 9348040
DOI: 10.1109/GLOBECOM42002.2020.9348040
OADOI: https://oadoi.org/10.1109/GLOBECOM42002.2020.9348040
Host publication: GLOBECOM 2020 - 2020 IEEE Global Communications Conference
Conference: IEEE Global Communications Conference
Type of Publication: A4 Article in conference proceedings
Field of Science: 213 Electronic, automation and communications engineering, electronics
Subjects:
Funding: This research was supported by the U.S. National Science Foundation under Grant IIS-1633363.
Copyright information: © 2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.