University of Oulu

Adeyemi Emman Aladejare, Musa Adebayo Idris, Performance analysis of empirical models for predicting rock mass deformation modulus using regression and Bayesian methods, Journal of Rock Mechanics and Geotechnical Engineering, Volume 12, Issue 6, 2020, Pages 1263-1271, ISSN 1674-7755, https://doi.org/10.1016/j.jrmge.2020.03.007

Performance analysis of empirical models for predicting rock mass deformation modulus using regression and Bayesian methods

Saved in:
Author: Aladejare, Adeyemi Emman1; Idris, Musa Adebayo2
Organizations: 1Oulu Mining School, University of Oulu, Oulu, Finland
2Division of Mining and Geotechnical Engineering, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, Luleå, Sweden
Format: article
Version: published version
Access: open
Online Access: PDF Full Text (PDF, 0.7 MB)
Persistent link: http://urn.fi/urn:nbn:fi-fe202102266118
Language: English
Published: Elsevier, 2020
Publish Date: 2021-02-26
Description:

Abstract

Deformation modulus of rock mass is one of the input parameters to most rock engineering designs and constructions. The field tests for determination of deformation modulus are cumbersome, expensive and time-consuming. This has prompted the development of various regression equations to estimate deformation modulus from results of rock mass classifications, with rock mass rating (RMR) being one of the frequently used classifications. The regression equations are of different types ranging from linear to nonlinear functions like power and exponential. Bayesian method has recently been developed to incorporate regression equations into a Bayesian framework to provide better estimates of geotechnical properties. The question of whether Bayesian method improves the estimation of geotechnical properties in all circumstances remains open. Therefore, a comparative study was conducted to assess the performances of regression and Bayesian methods when they are used to characterize deformation modulus from the same set of RMR data obtained from two project sites. The study also investigated the performance of different types of regression equations in estimation of the deformation modulus. Statistics, probability distributions and prediction indicators were used to assess the performances of regression and Bayesian methods and different types of regression equations. It was found that power and exponential types of regression equations provide a better estimate than linear regression equations. In addition, it was discovered that the ability of the Bayesian method to provide better estimates of deformation modulus than regression method depends on the quality and quantity of input data as well as the type of the regression equation.

see all

Series: Journal of rock mechanics and geotechnical engineering
ISSN: 1674-7755
ISSN-L: 1674-7755
Volume: 12
Issue: 6
Pages: 1263 - 1271
DOI: 10.1016/j.jrmge.2020.03.007
OADOI: https://oadoi.org/10.1016/j.jrmge.2020.03.007
Type of Publication: A1 Journal article – refereed
Field of Science: 1171 Geosciences
Subjects:
Copyright information: © 2020 Institute of Rock and Soil Mechanics, Chinese Academy of Sciences. Production and hosting by Elsevier B.V. This is an open access article under the CC BYNC- ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
  https://creativecommons.org/licenses/by-nc-nd/4.0/