University of Oulu

Wu, M.-C., Hsiao, K.-C., Chang, Y.-H., & Kordás, K. (2019). Core–Shell Heterostructures of Rutile and Anatase TiO2 Nanofibers for Photocatalytic Solar Energy Conversion. ACS Applied Nano Materials, 2(4), 1970–1979. https://doi.org/10.1021/acsanm.9b00005

Core–shell heterostructures of rutile and anatase TiO₂ nanofibers for photocatalytic solar energy conversion

Saved in:
Author: Wu, Ming-Chung1,2,3; Hsiao, Kai-Chi1; Chang, Yin-Hsuan1;
Organizations: 1Department of Chemical and Materials Engineering, Chang Gung University, Taoyuan 33302, Taiwan
2Green Technology Research Center, Chang Gung University, Taoyuan 33302, Taiwan
3Division of Neonatology, Department of Pediatrics, Chang Gung Memorial Hospital, Linkou, Taoyuan 33305, Taiwan
4Microelectronics Research Unit, University of Oulu, FI-90570 Oulu, Finland
Format: article
Version: accepted version
Access: open
Online Access: PDF Full Text (PDF, 3.3 MB)
Persistent link: http://urn.fi/urn:nbn:fi-fe202103177667
Language: English
Published: American Chemical Society, 2019
Publish Date: 2021-03-17
Description:

Abstract

Two types of core–shell heterostructure TiO₂ nanofibers (noted as core@shell TiO₂ NFs) were synthesized by sequential hydrothermal, calcination, and impregnation processes. Rutile TiO₂ nanofibers (R TiO₂ NFs) core with anatase TiO₂ nanoparticles (A TiO₂ NPs) shell is denoted as R@A TiO₂ NFs, and the reverse structure with anatase TiO₂ NFs core (A TiO₂ NFs) and rutile TiO₂ nanoparticles shell (R TiO₂ NPs) is denoted as A@R TiO₂ NFs. In our study, the photodegradation of organic dyes and Kelvin probe force microscopy (KPFM) analysis were applied to shed light on the mechanism of the excited electron–hole pair separation. The results of photodegradation showed that the A@R TiO₂ NFs have the highest activity under UV-B and UV-A irradiation, being nearly 3-fold higher as compared to AEROXIDE TiO₂ P₂₅. The results in conjunction with KPFM measurements indicated that, in the heterostructure, electron–hole pairs are efficiently separated, the excited electrons stay in the anatase phase, and holes are injected to the rutile phase. When the A@R TiO₂ NFs heterostructures are decorated with Pt nanoparticles (Pt-A@R TiO₂ NFs), the nanocomposite is particularly active in photocatalytic hydrogen evolution from ethanol–water mixtures with a production rate of ∼8,500 μmol/h·g. Our study not only explains the role of anatase–rutile junctions in photocarrier separation, but also projects the development of other efficient photocatalytic heterostructures for green energy production and conversion.

see all

Series: ACS applied nano materials
ISSN: 2574-0970
ISSN-E: 2574-0970
ISSN-L: 2574-0970
Volume: 2
Issue: 4
Pages: 1970 - 1979
DOI: 10.1021/acsanm.9b00005
OADOI: https://oadoi.org/10.1021/acsanm.9b00005
Type of Publication: A1 Journal article – refereed
Field of Science: 216 Materials engineering
Subjects:
Funding: We also thank Chang Gung Memorial Hospital, Linkou (Grant Nos. BMRPC74 and CMRPD2H0161), Chang Gung University (Grant No. QZRPD181), the Ministry of Science and Technology, Taiwan (Grant Nos. 106-2221-E-182-057-MY3 and 107-2119-M-002-012), and the Academy of Finland (Project Suplacat) for financial support.
Academy of Finland Grant Number: 442327
Detailed Information: 442327 (Academy of Finland Funding decision)
Copyright information: This document is the Accepted Manuscript version of a Published Work that appeared in final form in ACS Applied Nano Materials, copyright © American Chemical Society after peer review and technical editing by the publisher. To access the final edited and published work see https://doi.org/10.1021/acsanm.9b00005.