University of Oulu

Graph Adversarial Learning for Noisy Skeleton-based Action Recognition. (2021). Electronic Imaging. https://doi.org/10.2352/issn.2470-1173.2021.10.ipas-239

Graph adversarial learning for noisy skeleton-based action recognition

Saved in:
Author: Shi, Henglin1; Peng, Wei1; Liu, Xin2,1;
Organizations: 1Center for Machine Vision and Signal Analysis, University of Oulu, Finland
2School of Electrical and Information Engineering, Tianjin University, China
Format: article
Version: published version
Access: open
Online Access: PDF Full Text (PDF, 0.6 MB)
Persistent link: http://urn.fi/urn:nbn:fi-fe2021041410352
Language: English
Published: Society for Imaging Science & Technology, 2021
Publish Date: 2021-04-14
Description:

Abstract

Skeleton based action recognition is playing a critical role in computer vision research, its applications have been widely deployed in many areas. Currently, benefiting from the graph convolutional networks (GCN), the performance of this task is dramatically improved due to the powerful ability of GCN for modeling the Non-Euclidean data. However, most of these works are designed for the clean skeleton data while one unavoidable drawback is such data is usually noisy in reality, since most of such data is obtained using depth camera or even estimated from RGB camera, rather than recorded by the high quality but extremely costly Motion Capture (MoCap) [1] system. Under this circumstance, we propose a novel GCN framework with adversarial training to deal with the noisy skeleton data. With the guiding of the clean data in the semantic level, a reliable graph embedding can be extracted for noisy skeleton data. Besides, a discriminator is introduced such that the feature representation could further improved since it is learned with an adversarial learning fashion. We empirically demonstrate the proposed framework based on two current largest scale skeleton-based action recognition datasets. Comparison results show the superiority of our method when compared to the state-of-the-art methods under the noisy settings.

see all

Series: IS&T International Symposium on Electronic Imaging
ISSN: 2470-1173
ISSN-E: 2470-1173
ISSN-L: 2470-1173
Pages: 1 - 7
DOI: 10.2352/ISSN.2470-1173.2021.10.IPAS-239
OADOI: https://oadoi.org/10.2352/ISSN.2470-1173.2021.10.IPAS-239
Host publication: IS&T International Symposium on Electronic Imaging 2021: Image Processing: Algorithms and Systems proceedings
Conference: IS&T International Symposium on Electronic Imaging
Type of Publication: A4 Article in conference proceedings
Field of Science: 113 Computer and information sciences
Subjects:
Copyright information: © 2021, Society for Imaging Science and Technology.