Modelling CO₂ and CH₄ emissions from drained peatlands with grass cultivation by the BASGRA-BGC model |
|
Author: | Huang, Xiao1; Silvennoinen, Hanna2; Kløve, Bjørn3; |
Organizations: |
1Norwegian Institute of Bioeconomy Research, Klepp Station, Norway 2Norwegian Institute of Bioeconomy Research, Ås, Norway 3Water, Energy and Environmental Engineering Research Unit, University of Oulu, Oulu, Finland
4Bioeconomy and Environment Unit, Natural Resources Institute Finland, Jokioinen, Finland
5Noble Research Institute, LLC, Ardmore, USA 6Thünen Institute for Climate-Smart Agriculture, Braunschweig, Germany 7Delta Water Management Research Unit, USDA-ARS, Jonesboro, USA 8Department of Agroecology, Aarhus University, Interdisciplinary Centre for Climate Change, Tjele, Denmark |
Format: | article |
Version: | published version |
Access: | open |
Online Access: | PDF Full Text (PDF, 3.5 MB) |
Persistent link: | http://urn.fi/urn:nbn:fi-fe2021041910867 |
Language: | English |
Published: |
Elsevier,
2021
|
Publish Date: | 2021-04-19 |
Description: |
AbstractCultivated peatlands under drainage practices contribute significant carbon losses from agricultural sector in the Nordic countries. In this research, we developed the BASGRA-BGC model coupled with hydrological, soil carbon decomposition and methane modules to simulate the dynamic of water table level (WTL), carbon dioxide (CO₂) and methane (CH₄) emissions for cultivated peatlands. The field measurements from four experimental sites in Finland, Denmark and Norway were used to validate the predictive skills of this novel model under different WTL management practices, climatic conditions and soil properties. Compared with daily observations, the model performed well in terms of RMSE (Root Mean Square Error; 0.06–0.11 m, 1.22–2.43 gC/m²/day, and 0.002–0.330 kgC/ha/day for WTL, CO₂ and CH₄, respectively), NRMSE (Normalized Root Mean Square Error; 10.3–18.3%, 13.0–18.6%, 15.3–21.9%) and Pearson’s r (Pearson correlation coefficient; 0.60–0.91, 0.76–0.88, 0.33–0.80). The daily/seasonal variabilities were therefore captured and the aggregated results corresponded well with annual estimations. We further provided an example on the model’s potential use in improving the WTL management to mitigate CO₂ and CH₄ emissions while maintaining grass production. At all study sites, the simulated WTLs and carbon decomposition rates showed a significant negative correlation. Therefore, controlling WTL could effectively reduce carbon losses. However, given the highly diverse carbon decomposition rates within individual WTLs, adding indicators (e.g. soil moisture and peat quality) would improve our capacity to assess the effectiveness of specific mitigation practices such as WTL control and rewetting. see all
|
Series: |
Science of the total environment |
ISSN: | 0048-9697 |
ISSN-E: | 1879-1026 |
ISSN-L: | 0048-9697 |
Volume: | 765 |
Article number: | 144385 |
DOI: | 10.1016/j.scitotenv.2020.144385 |
OADOI: | https://oadoi.org/10.1016/j.scitotenv.2020.144385 |
Type of Publication: |
A1 Journal article – refereed |
Field of Science: |
1172 Environmental sciences 218 Environmental engineering |
Subjects: | |
Funding: |
We acknowledge support from the project “Climate smart use of Norwegian organic soils” (MYR, 2017-2022) funded by the Research Council of Norway (decision no. 281109). |
Copyright information: |
© 2020 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
https://creativecommons.org/licenses/by-nc-nd/4.0/ |