University of Oulu

H. Asgharimoghaddam, J. Kaleva and A. Tölli, "Capacity Approaching Low Density Spreading in Uplink NOMA via Asymptotic Analysis," in IEEE Transactions on Communications, vol. 69, no. 3, pp. 1635-1649, March 2021, doi: 10.1109/TCOMM.2020.3040409

Capacity approaching low density spreading in Uplink NOMA via asymptotic analysis

Saved in:
Author: Asgharimoghaddam, Hossein1; Tölli, Antti1
Organizations: 1Centre for Wireless Communications, University of Oulu, Oulu, Finland
Format: article
Version: accepted version
Access: open
Online Access: PDF Full Text (PDF, 1.6 MB)
Persistent link:
Language: English
Published: Institute of Electrical and Electronics Engineers, 2021
Publish Date: 2021-04-23


Low-density spreading non-orthogonal multiple-access (LDS-NOMA) is considered where \(K\) single-antenna user-equipments (UEs) communicate with a base-station (BS) over \(F\) fading sub-carriers. Each UE \(k\) spreads its data symbols over \(d_{k}≪F\) sub-carriers. The performance of LDS-NOMA system depends on the allocation of the non-zero elements in the LDS-codes. We aim to identify the LDS resource allocations, based solely on pathlosses, that maximize the ergodic mutual information (EMI). This problem can be solved only via an exhaustive search. Thus, relying on analysis in the regime where \(F\), \(K\), and \(d_{k},∀k\) converge to \(+∞\) at the same rate, we present EMI as a deterministic equivalent plus a residual term. The deterministic equivalent is a function of pathloss values and LDS-codes, and the small residual term scales as \(\mathcal{O}(\frac{1}{min(d^{2}_{k})})\). First, we formulate an optimization problem to identify the resource allocations that maximize the deterministic equivalent of EMI. The Karush-Kuhn-Tucker conditions give a simple resource allocation rule that facilitates the construction of desired LDS-codes via an efficient partitioning algorithm. The finite-regime analysis shows that such sparse solutions additionally harness the small incremental gain inherent in the residual term, and thus, provides a near-optimal performance. The spectral efficiency enhancement relative to regular and random spreading is validated numerically.

see all

Series: IEEE transactions on communications
ISSN: 0090-6778
ISSN-E: 1558-0857
ISSN-L: 0090-6778
Volume: 69
Issue: 3
Pages: 1635 - 1649
DOI: 10.1109/TCOMM.2020.3040409
Type of Publication: A1 Journal article – refereed
Field of Science: 213 Electronic, automation and communications engineering, electronics
Copyright information: © 2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.