University of Oulu

P. Sutter, H.P. Komsa, H. Lu, A. Gruverman, E. Sutter, Few-layer tin sulfide (SnS): Controlled synthesis, thickness dependent vibrational properties, and ferroelectricity, Nano Today, Volume 37, 2021, 101082, ISSN 1748-0132, https://doi.org/10.1016/j.nantod.2021.101082

Few-layer tin sulfide (SnS) : controlled synthesis, thickness dependent vibrational properties, and ferroelectricity

Saved in:
Author: Sutter, P.1; Komsa, H. P.2; Lu, H.3;
Organizations: 1Department of Electrical and Computer Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588, United States
2Faculty of Information Technology and Electrical Engineering, University of Oulu, FI-90014 Oulu, Finland
3Department of Physics and Astronomy, University of Nebraska-Lincoln, Lincoln, NE 68588, United States
4Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588, United States
Format: article
Version: accepted version
Access: embargoed
Persistent link: http://urn.fi/urn:nbn:fi-fe2021050428642
Language: English
Published: Elsevier, 2021
Publish Date: 2023-01-25
Description:

Abstract

Group IV monochalcogenides, anisotropic van der Waals crystals (and black phosphorus analogues), are attracting increasing interest due to a number of exceptional properties including anisotropic optoelectronics and multiferroicity predicted and in part realized in the ultrathin limit. Due to their enhanced chemical reactivity, both exfoliation and synthesis of monolayer and few-layer crystals pose challenges not found in other 2D/layered materials, such as the transition metal dichalcogenides. Here, we show that SnS synthesis on SnS₂ van der Waals substrates can address these challenges and consistently produces few-layer flakes, a capability that is explained via analysis of real-time microscopy of the growth process. Raman spectroscopy combined with efficient computations of the Raman-active modes across an extended thickness range enables a comprehensive understanding of the evolution of the vibrational properties of SnS with number of layers. Lateral piezoresponse force microscopy provides unprecedented insight into the stacking-dependent polarization and ferroelectric domain structures in large few-layer SnS flakes. The combined results establish a basis for further fundamental studies and applications of SnS and other group IV monochalcogenides in the few-layer regime.

see all

Series: Nano today
ISSN: 1748-0132
ISSN-E: 1878-044X
ISSN-L: 1748-0132
Volume: 37
Article number: 101082
DOI: 10.1016/j.nantod.2021.101082
OADOI: https://oadoi.org/10.1016/j.nantod.2021.101082
Type of Publication: A1 Journal article – refereed
Field of Science: 216 Materials engineering
213 Electronic, automation and communications engineering, electronics
Subjects:
Funding: This work was supported by the U.S. Department of Energy, Office of Science, Basic Energy Sciences, under Award No. DE-SC0016343. The authors acknowledge J. Wang for technical support. PFM measurements were supported by the National Science Foundation (NSF) through the Nebraska Materials Research Science and Engineering Center (MRSEC, grant DMR-1420645) (A.G. and H.L.). H.-P.K. acknowledges funding for computational work from the Academy of Finland under Project No. 311058. We thank CSC Finland for generous grants of CPU time.
Copyright information: © 2021 Elsevier Ltd. All rights reserved. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/.
  https://creativecommons.org/licenses/by-nc-nd/4.0/