University of Oulu

Myllykoski, M., Sutinen, A., Koski, M. K., Kallio, J. P., Raasakka, A., Myllyharju, J., Wierenga, R. K., & Koivunen, P. (2021). Structure of transmembrane prolyl 4-hydroxylase reveals unique organization of EF and dioxygenase domains. Journal of Biological Chemistry, 296, 100197. https://doi.org/10.1074/jbc.ra120.016542

Structure of transmembrane prolyl 4-hydroxylase reveals unique organization of EF and dioxygenase domains

Saved in:
Author: Myllykoski, Matti1,2; Sutinen, Aleksi1; Koski, M. Kristian1;
Organizations: 1Biocenter Oulu, Faculty of Biochemistry and Molecular Medicine
2Oulu Center for Cell-Matrix Research, University of Oulu, Oulu, Finland
3Department of Biomedicine, University of Bergen, Bergen, Norway
Format: article
Version: published version
Access: embargoed
Persistent link: http://urn.fi/urn:nbn:fi-fe2021050629046
Language: English
Published: American Society for Biochemistry and Molecular Biology, 2021
Publish Date: 2022-01-04
Description:

Abstract

Prolyl 4-hydroxylases (P4Hs) catalyze post-translational hydroxylation of peptidyl proline residues. In addition to collagen P4Hs and hypoxia-inducible factor P4Hs, a third P4H—the poorly characterized endoplasmic reticulum–localized transmembrane prolyl 4-hydroxylase (P4H-TM)—is found in animals. P4H-TM variants are associated with the familiar neurological HIDEA syndrome, but how these variants might contribute to disease is unknown. Here, we explored this question in a structural and functional analysis of soluble human P4H-TM. The crystal structure revealed an EF domain with two Ca2+-binding motifs inserted within the catalytic domain. A substrate-binding groove was formed between the EF domain and the conserved core of the catalytic domain. The proximity of the EF domain to the active site suggests that Ca2+ binding is relevant to the catalytic activity. Functional analysis demonstrated that Ca2+-binding affinity of P4H-TM is within the range of physiological Ca2+ concentration in the endoplasmic reticulum. P4H-TM was found both as a monomer and a dimer in the solution, but the monomer–dimer equilibrium was not regulated by Ca2+. The catalytic site contained bound Fe2+ and N-oxalylglycine, which is an analogue of the cosubstrate 2-oxoglutarate. Comparison with homologous P4H structures complexed with peptide substrates showed that the substrate-interacting residues and the lid structure that folds over the substrate are conserved in P4H-TM, whereas the extensive loop structures that surround the substrate-binding groove, generating a negative surface potential, are different. Analysis of the structure suggests that the HIDEA variants cause loss of P4H-TM function. In conclusion, P4H-TM shares key structural elements with other P4Hs while having a unique EF domain.

see all

Series: Journal of biological chemistry
ISSN: 0021-9258
ISSN-E: 1083-351X
ISSN-L: 0021-9258
Volume: 296
Article number: 100197
DOI: 10.1074/jbc.RA120.016542
OADOI: https://oadoi.org/10.1074/jbc.RA120.016542
Type of Publication: A1 Journal article – refereed
Field of Science: 1182 Biochemistry, cell and molecular biology
Subjects:
Funding: This work was supported by Academy of Finland grants 266719 and 308009 (P. K.), and 296498 (J. M.), the Academy of Finland Center of Excellence 2012–2017 grant 251314 and 284605 (J. M.), and grants from the S. Jusélius Foundation (P. K. and J. M.) and the Jane and Aatos Erkko Foundation (P. K. and J. M.).
Academy of Finland Grant Number: 266719
308009
296498
251314
284605
Detailed Information: 266719 (Academy of Finland Funding decision)
308009 (Academy of Finland Funding decision)
296498 (Academy of Finland Funding decision)
251314 (Academy of Finland Funding decision)
284605 (Academy of Finland Funding decision)
Copyright information: © 2020 the Authors. This research was originally published in the Journal of Biological Chemistry. Myllykoski, M., Sutinen, A., Koski, M. K., Kallio, J. P., Raasakka, A., Myllyharju, J., Wierenga, R. K., & Koivunen, P. Structure of transmembrane prolyl 4-hydroxylase reveals unique organization of EF and dioxygenase domains. J Biol Chem. 2020; 296:100197. Published by Elsevier Inc on behalf of American Society for Biochemistry and Molecular Biology. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
  https://creativecommons.org/licenses/by/4.0/