University of Oulu

Kelsey, K.C., Pedersen, S.H., Leffler, A.J., Sexton, J.O., Feng, M. and Welker, J.M. (2021), Winter snow and spring temperature have differential effects on vegetation phenology and productivity across Arctic plant communities. Glob. Change Biol., 27: 1572-1586. https://doi.org/10.1111/gcb.15505

Winter snow and spring temperature have differential effects on vegetation phenology and productivity across Arctic plant communities

Saved in:
Author: Kelsey, Katharine C.1; Højlund Pedersen, Stine2,3; Leffler, A. Joshua4;
Organizations: 1Department of Geography and Environmental Science, University of Colorado Denver, Denver, CO, USA
2Cooperative Institute for Research in the Atmosphere, Colorado State University, Ft. Collins, CO, USA
3Department of Biological Sciences, University of Alaska Anchorage, Anchorage, AK, USA
4Department of Natural Resource Management, South Dakota State University, Brookings, SD, USA
5terraPulse, Inc, Gaithersburg, MD, USA
6Ecology and Genetics Research Unit, University of Oulu, Oulu, Finland
7University of the Arctic-UArctic, Rovaniemi, Finland
Format: article
Version: accepted version
Access: embargoed
Persistent link: http://urn.fi/urn:nbn:fi-fe2021070140820
Language: English
Published: John Wiley & Sons, 2021
Publish Date: 2021-12-28
Description:

Abstract

Tundra dominates two-thirds of the unglaciated, terrestrial Arctic. Although this region has experienced rapid and widespread changes in vegetation phenology and productivity over the last several decades, the specific climatic drivers responsible for this change remain poorly understood. Here we quantified the effect of winter snowpack and early spring temperature conditions on growing season vegetation phenology (timing of the start, peak, and end of the growing season) and productivity of the dominant tundra vegetation communities of Arctic Alaska. We used daily remotely sensed normalized difference vegetation index (NDVI), and daily snowpack and temperature variables produced by SnowModel and MicroMet, coupled physically based snow and meteorological modeling tools, to (1) determine the most important snowpack and thermal controls on tundra vegetation phenology and productivity and (2) describe the direction of these relationships within each vegetation community. Our results show that soil temperature under the snowpack, snowmelt timing, and air temperature following snowmelt are the most important drivers of growing season timing and productivity among Arctic vegetation communities. Air temperature after snowmelt was the most important control on timing of season start and end, with warmer conditions contributing to earlier phenology in all vegetation communities. In contrast, the controls on the timing of peak season and productivity also included snowmelt timing and soil temperature under the snowpack, dictated in part by the snow insulating capacity. The results of this novel analysis suggest that while future warming effects on phenology may be consistent across communities of the tundra biome, warming may result in divergent, community-specific productivity responses if coupled with reduced snow insulating capacity lowers winter soil temperature and potential nutrient cycling in the soil.

see all

Series: Global change biology
ISSN: 1354-1013
ISSN-E: 1365-2486
ISSN-L: 1354-1013
Volume: 27
Issue: 8
Pages: 1572 - 1586
DOI: 10.1111/gcb.15505
OADOI: https://oadoi.org/10.1111/gcb.15505
Type of Publication: A1 Journal article – refereed
Field of Science: 1181 Ecology, evolutionary biology
Subjects:
Funding: US National Science Foundation. Grant Numbers: 1604249, 1604105, 1602440, 1602898, 1604160.
Dataset Reference: The data that support the findings of this study are available from the corresponding author upon reasonable request.
Copyright information: © 2020 John Wiley & Sons Ltd. This is the peer reviewed version of the following article: Kelsey, K.C., Pedersen, S.H., Leffler, A.J., Sexton, J.O., Feng, M. and Welker, J.M. (2021), Winter snow and spring temperature have differential effects on vegetation phenology and productivity across Arctic plant communities. Glob. Change Biol., 27: 1572-1586, which has been published in final form at https://doi.org/10.1111/gcb.15505. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving.