University of Oulu

Virpiranta, H., Sotaniemi, V.-H., Leiviskä, T., Taskila, S., Rämö, J., Johnson, D. B., & Tanskanen, J. (2022). Continuous removal of sulfate and metals from acidic mining-impacted waters at low temperature using a sulfate-reducing bacterial consortium. Chemical Engineering Journal, 427, 132050. https://doi.org/10.1016/j.cej.2021.132050

Continuous removal of sulfate and metals from acidic mining-impacted waters at low temperature using a sulfate-reducing bacterial consortium

Saved in:
Author: Virpiranta, Hanna1; Sotaniemi, Ville-Hermanni1; Leiviskä, Tiina1;
Organizations: 1University of Oulu, Chemical Process Engineering, PO Box 4300, 90014 Oulu, Finland
2Bangor University, School of Natural Sciences, Bangor LL57 2UW, United Kingdom & Coventry University, Health and Life Sciences, Coventry CV1 5FB, United Kingdom
Format: article
Version: published version
Access: open
Online Access: PDF Full Text (PDF, 1.2 MB)
Persistent link: http://urn.fi/urn:nbn:fi-fe2021090144949
Language: English
Published: Elsevier, 2022
Publish Date: 2021-09-01
Description:

Abstract

The aim of this study was to develop a biological method for the simultaneous removal of sulfate and metals from acidic low-temperature mining effluents. A mixed consortium of cold-tolerant sulfate-reducing bacteria (SRB) and other microorganisms was immobilized on glass beads and exploited in an up-flow biofilm reactor for the continuous treatment of actual and synthetic mining-impacted waters (MIWs) with initial sulfate concentrations between 1580 and 5350 mg L⁻¹. The proton acidity of the mine waters was neutralized by microbial sulfidogenesis. Metals present in the MIWs were precipitated either off-line or in-line, inside the reactor vessel. High sulfate reduction rates (SRRs), from 1000 to 4500 mg L⁻¹ d⁻¹ at a temperature of 11.7 ± 0.2 °C, were achieved (sulfate removal 43–87%). The bacterial consortium was found to be robust and resistant to changes in growth conditions during the bioreactor experiment. The relative abundance of SRB and the SRR increased at higher sulfate concentrations. Sulfidogenic bioreactors have the potential for treatment of acid mine drainage even at low temperature. It was demonstrated that neutral reactor conditions and high SRRs were maintained when acidic influent was fed into the reactor.

see all

Series: Chemical engineering journal
ISSN: 1385-8947
ISSN-E: 1873-3212
ISSN-L: 1385-8947
Volume: 427
Article number: 132050
DOI: 10.1016/j.cej.2021.132050
OADOI: https://oadoi.org/10.1016/j.cej.2021.132050
Type of Publication: A1 Journal article – refereed
Field of Science: 219 Environmental biotechnology
Subjects:
Funding: The study was conducted as part of the Comprehensive Sulphate Management in Cold Mining Wates (COSUMA) research project (Grant number 295050), funded by the Academy of Finland. The study was also part of the Supporting Environmental, Economic and Social Impacts of Mining Activity (KO1030 SEESIMA) research project and received financial support from the Kolarctic CBC (Cross-Border Collaboration), the European Union, Russia, Norway, Finland, and Sweden.
Academy of Finland Grant Number: 295050
Detailed Information: 295050 (Academy of Finland Funding decision)
Copyright information: © 2021 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
  https://creativecommons.org/licenses/by/4.0/