University of Oulu

Z. Wu, H. Ebisawa, K. Umebayashi, J. Lehtomäki and N. Zorba, "Time Domain Propagation Characteristics with Causal Channel Model for Terahertz Band," 2021 IEEE International Conference on Communications Workshops (ICC Workshops), 2021, pp. 1-6, doi: 10.1109/ICCWorkshops50388.2021.9473820

Time domain propagation characteristics with causal channel model for Terahertz band

Saved in:
Author: Wu, Zhaona1; Ebisawa, Hiroto1; Umebayashi, Kenta1;
Organizations: 1Tokyo University of Agriculture and Technology
2Centre for Wireless Communications, University of Oulu
3Qatar University
Format: article
Version: accepted version
Access: open
Online Access: PDF Full Text (PDF, 0.8 MB)
Persistent link:
Language: English
Published: Institute of Electrical and Electronics Engineers, 2021
Publish Date: 2021-10-25


In recent years, as more devices are connected to wireless communication systems, the demand for spectrum has increased. As conventional spectrum resources are limited, the THz band becomes an interesting option of more spectrum for wireless communication. However, the channel in THz band has different characteristics compared to the channels in typical frequency bands, and therefore, it is necessary to perform more research to understand the THz channel propagation. In this paper, we focus on the time domain THz channel model under line of sight (LoS) propagation conditions and investigate the channel propagation characteristics in time domain. Firstly, in the full frequency band (FFB) scenario, the time domain impulse responses, which correspond to the time domain THz channel model, are presented for different distances. In the impulse responses, there are significantly delayed paths due to the molecular absorption which causes significant frequency selectivity. Secondly, we extend the model to the limited frequency band (LFB) scenario by applying the root raised cosine filters. The results indicate that the richness of the delayed paths in the impulse response depends on the selected frequency band. In addition, the results indicate that the time delay and total energy strongly depend on the distance whereas the delay spread varies as a function of frequency.

see all

Series: IEEE International Conference on Communications workshop
ISSN: 2164-7038
ISSN-E: 2694-2941
ISSN-L: 2164-7038
ISBN: 978-1-7281-9441-7
ISBN Print: 978-1-7281-9442-4
Article number: 9473820
DOI: 10.1109/ICCWorkshops50388.2021.9473820
Host publication: 2021 IEEE International Conference on Communications Workshops, ICC Workshops 2021
Conference: IEEE International Conference on Communications Workshops
Type of Publication: A4 Article in conference proceedings
Field of Science: 213 Electronic, automation and communications engineering, electronics
Funding: This work was partially funded by project Marubeni – Qatar University number M-QJRC-2020-4. The statements made herein are solely the responsibility of the authors. The work of J. Lehtom¨aki was supported by the Academy of Finland 6Genesis Flagship (grant no. 318927).
Academy of Finland Grant Number: 318927
Detailed Information: 318927 (Academy of Finland Funding decision)
Copyright information: © 2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.