University of Oulu

Putrakumar Balla, Prem Kumar Seelam, Ravi Balaga, Rajendiren Rajesh, Vijayanand Perupogu, Tong Xiang Liang, Immobilized highly dispersed Ni nanoparticles over porous carbon as an efficient catalyst for selective hydrogenation of furfural and levulinic acid, Journal of Environmental Chemical Engineering, Volume 9, Issue 6, 2021, 106530, ISSN 2213-3437, https://doi.org/10.1016/j.jece.2021.106530

Immobilized highly dispersed Ni nanoparticles over porous carbon as an efficient catalyst for selective hydrogenation of furfural and levulinic acid

Saved in:
Author: Balla, Putrakumar1; Seelam, Prem Kumar2,3; Balaga, Ravi4;
Organizations: 1Engineering Research Centre for Hydrogen Energy & New Materials, College of Rare Earths (CoRE), Jiangxi University of Science and Technology, Ganzhou 341000, China
2Environmental and Chemical Engineering Unit, Faculty of Technology, University of Oulu, P.O. Box 4300, 90014, Finland
3Sustainable Chemistry Research Unit, Faculty of Technology, University of Oulu, P.O. Box 4300, 90014, Finland
4Energy & Environmental Engineering Department CSIR-Indian Institute of Chemical Technology, Hyderabad, Telangana 500007, India
Format: article
Version: published version
Access: open
Online Access: PDF Full Text (PDF, 5.5 MB)
Persistent link: http://urn.fi/urn:nbn:fi-fe2021111054582
Language: English
Published: Elsevier, 2021
Publish Date: 2021-11-10
Description:

Abstract

Sustainable catalysis is the key for the future progress toward biorefinery and bioeconomy. In this work, we designed and developed an inexpensive and eco-friendly Ni@C catalyst for selective hydrogenation of biomass-based platform molecules. A facile synthesized Ni nanoparticles encapsulated in a stabilized carbon support derived from a sacrificial agent copolymer-gel was investigated in the hydrogenation of furfural (FA) to tetrahydrofurfuryl alcohol (THFOL) and levulinic acid (LA) to γ-valeralactone (GVL). The aim is to study the two different reactions over a highly stabilized Ni nanoparticles embedded in the carbon matrix. The Ni@C was found to be active and selective in multi-catalyzed hydrogenation reactions. The Ni nanoparticles with small and ultra-fine sizes are highly dispersed over the carbon matrix. This was concluded through high-resolution micrography images (SEM, TEM) and XRD patterns. In both reactions, a complete conversion of furfural and levulinic acid was achieved with maximum selectivity over the Ni@C catalyst. The effect of reaction temperature, solvent type, reaction time, and H₂ pressure were also studied. Overall, optimized reaction conditions were determined, and the Ni@C is easily reusable and exceptionally durable in the studied reaction cycles. The apparent activation energies for FA hydrogenation to THFOL and LA hydrogenation to GVL are 15.4 kJ/mol and 33.6 kJ/mol, respectively.

see all

Series: Journal of environmental chemical engineering
ISSN: 2213-2929
ISSN-E: 2213-3437
ISSN-L: 2213-2929
Volume: 9
Issue: 6
Article number: 106530
DOI: 10.1016/j.jece.2021.106530
OADOI: https://oadoi.org/10.1016/j.jece.2021.106530
Type of Publication: A1 Journal article – refereed
Field of Science: 116 Chemical sciences
218 Environmental engineering
215 Chemical engineering
Subjects:
Funding: This research was funded by National Natural Science Foundation of China (Project No. 51871114).
Copyright information: © 2021 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
  https://creativecommons.org/licenses/by/4.0/