University of Oulu

Perera, M.A.N.; Katz, M.; Häkkinen, J.; Godaliyadda, R. Light-Based IoT: Developing a Full-Duplex Energy Autonomous IoT Node Using Printed Electronics Technology. Sensors 2021, 21, 8024.

Light-based IoT : developing a full-duplex energy autonomous IoT node using printed electronics technology

Saved in:
Author: Perera, Malalgodage Amila Nilantha1; Katz, Marcos1; Häkkinen, Juha2;
Organizations: 1Centre for Wireless Communications, University of Oulu, 90570 Oulu, Finland
2Circuits and Systems Research Unit, University of Oulu, 90570 Oulu, Finland
3Department of Electrical and Electronic Engineering, University of Peradeniya, Kandy 20400, Sri Lanka
Format: article
Version: published version
Access: open
Online Access: PDF Full Text (PDF, 4.6 MB)
Persistent link:
Language: English
Published: Multidisciplinary Digital Publishing Institute, 2021
Publish Date: 2021-12-17


The light-based Internet of things (LIoT) concept defines nodes that exploit light to (a) power up their operation by harvesting light energy and (b) provide full-duplex wireless connectivity. In this paper, we explore the LIoT concept by designing, implementing, and evaluating the communication and energy harvesting performance of a LIoT node. The use of components based on printed electronics (PE) technology is adopted in the implementation, supporting the vision of future fully printed LIoT nodes. In fact, we envision that as PE technology develops, energy-autonomous LIoT nodes will be entirely printed, resulting in cost-efficient, flexible and highly sustainable connectivity solutions that can be attached to the surface of virtually any object. However, the use of PE technology poses additional challenges to the task, as the performance of these components is typically considerably poorer than that of conventional components. In the study, printed photovoltaic cells, printed OLEDs (organic light-emitting diodes) as well as printed displays are used in the node implementation. The dual-mode operation of the proposed LIoT node is demonstrated, and its communication performance in downlink and uplink directions is evaluated. In addition, the energy harvesting system’s behaviour is studied and evaluated under different illumination scenarios and based on the results, a novel self-operating limitation aware algorithm for LIoT nodes is proposed.

see all

Series: Sensors
ISSN: 1424-8220
ISSN-E: 1424-8220
ISSN-L: 1424-8220
Volume: 21
Issue: 23
Article number: 8024
DOI: 10.3390/s21238024
Type of Publication: A1 Journal article – refereed
Field of Science: 213 Electronic, automation and communications engineering, electronics
Funding: This work was supported by the Academy of Finland—6G Flagship.
Copyright information: © 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (