University of Oulu

Mehmood, Hassan; Hiltunen, Mikko; Makkonen, Tomi; Immonen, Matti; Pirttikangas, Susanna (2021) Road map for implementing AI-driven Oulu Smart excavator. In: Chen Feng, Thomas Linner, Ioannis Brilakis (eds.) Proceedings of the ... ISARC, Proceedings of the 38th International Symposium on Automation and Robotics in Construction (ISARC 2021), Dubai, United Arab Emirates, November 2-4, 2021, (pp. 819-826). International association for automation and robotics in construction.

Road map for implementing AI-driven Oulu Smart excavator

Saved in:
Author: Mehmood, Hassan1; Hiltunen, Mikko2; Makkonen, Tomi2;
Organizations: 1Center for Ubiquitous Computing, University of Oulu, Finland
2Construction Automation Research Center in Civil Engineering, University of Oulu, Finland
Format: article
Version: published version
Access: open
Online Access: PDF Full Text (PDF, 0.4 MB)
Persistent link: http://urn.fi/urn:nbn:fi-fe202201132300
Language: English
Published: International Association for Automation and Robotics in Construction, 2021
Publish Date: 2022-01-13
Description:

Abstract

Evolving machine control systems for excavators are getting more capable every year in civil engineering, now they are usually equipped with hydraulic motion control, localization, and design models in form of building information modelling (BIM). Machine control systems are advancing side by side with the adoption of fast wireless connections like 5G and growing trends of internet of things (IoT) and machine learning. AI across our ecosystem has made autonomous excavator more ubiquitous in nature. The autonomous excavators have gained significant interest in earth works area, due to their enhanced productivity for long hours, safety and lack of skilled human operators, and space exploration for unmanned mining and construction work.

However, A great amount of effort is required to address many existing challenges such as, adaptive movement and control, task planning (digging, moving debris etc.), continuous environment sensing, avoiding collision (moving animals or objects on site), collaborative work with other machines and humans. In this study, we review state of the art and provide a artificial intelligence (AI-) driven road map for implementing a complete autonomous framework for earthmoving machine to our autonomous excavator test platform ’Smart Excavator’. Furthermore, the challenges and required effort to implement the framework are also discussed in comparison with existing literature.

see all

Series: ISARC proceedings
ISSN: 2413-5844
ISSN-E: 2413-5844
ISSN-L: 2413-5844
ISBN: 978-952-69524-1-3
Pages: 819 - 826
Host publication: Proceedings of the 38th International Symposium on Automation and Robotics in Construction (ISARC 2021), Dubai, United Arab Emirates, November 2-4, 2021
Host publication editor: Feng, Chen
Linner, Thomas
Brilakis, Ioannis
Conference: International Symposium on Automation and Robotics in Construction
Type of Publication: A4 Article in conference proceedings
Field of Science: 113 Computer and information sciences
Subjects:
Copyright information: © 2021 International Association on Automation and Robotics in Construction.