Communication efficient decentralized learning over bipartite graphs |
|
Author: | Ben Issaid, Chaouki1; Elgabli, Anis1; Park, Jihong2; |
Organizations: |
1Centre of Wireless Communications, University of Oulu, 90014 Oulu, Finland 2School of Information Technology, Deakin University, Geelong, VIC 3220, Australia 3Technology Innovation Institute, 9639 Masdar City, Abu Dhabi, United Arab Emirates and CentraleSupélec, University Paris-Saclay, 91192 Gif-sur-Yvette, France |
Format: | article |
Version: | published version |
Access: | open |
Online Access: | PDF Full Text (PDF, 2.6 MB) |
Persistent link: | http://urn.fi/urn:nbn:fi-fe2022020717882 |
Language: | English |
Published: |
Institute of Electrical and Electronics Engineers,
2021
|
Publish Date: | 2022-02-07 |
Description: |
AbstractIn this paper, we propose a communication-efficiently decentralized machine learning framework that solves a consensus optimization problem defined over a network of inter-connected workers. The proposed algorithm, Censored and Quantized Generalized GADMM (CQ-GGADMM), leverages the worker grouping and decentralized learning ideas of Group Alternating Direction Method of Multipliers (GADMM), and pushes the frontier in communication efficiency by extending its applicability to generalized network topologies, while incorporating link censoring for negligible updates after quantization. We theoretically prove that CQ-GGADMM achieves the linear convergence rate when the local objective functions are strongly convex under some mild assumptions. Numerical simulations corroborate that CQ-GGADMM exhibits higher communication efficiency in terms of the number of communication rounds and transmit energy consumption without compromising the accuracy and convergence speed, compared to the censored decentralized ADMM, and the worker grouping method of GADMM. see all
|
Series: |
IEEE transactions on wireless communications |
ISSN: | 1536-1276 |
ISSN-E: | 1558-2248 |
ISSN-L: | 1536-1276 |
Volume: | 21 |
Issue: | 6 |
Pages: | 4150 - 4167 |
DOI: | 10.1109/TWC.2021.3126859 |
OADOI: | https://oadoi.org/10.1109/TWC.2021.3126859 |
Type of Publication: |
A1 Journal article – refereed |
Field of Science: |
213 Electronic, automation and communications engineering, electronics |
Subjects: | |
Funding: |
This work is supported by Academy of Finland 6G Flagship (grant no. 318927) and project SMARTER, projects EU-ICT IntellIoT (grant no. 957218) and EUCHISTERA LearningEdge, and CONNECT, Infotech-NOOR, and NEGEIN. |
EU Grant Number: |
(957218) IntellIoT - Intelligent, distributed, human-centered and trustworthy IoT environments |
Academy of Finland Grant Number: |
318927 |
Detailed Information: |
318927 (Academy of Finland Funding decision) |
Copyright information: |
© 2021 IEEE. This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ |
https://creativecommons.org/licenses/by/4.0/ |