University of Oulu

Wu, Y., Uusitalo, J. & DeArdo, A.J. Stored Energy Evaluation for High Strength Dual-Phase Steels with Different Pre-annealing Conditions. Metall Mater Trans A 51, 4727–4741 (2020).

Stored energy evaluation for high strength dual-phase steels with different pre-annealing conditions

Saved in:
Author: Wu, Yingjie1; Uusitalo, Juha2; DeArdo, Anthony J.1,2
Organizations: 1Department of Mechanical Engineering and Materials Science, Basic Metals Processing Research Institute, Swanson School of Engineering, University of Pittsburgh, 636 Benedum Hall, 3700 O’Hara Street, Pittsburgh, PA, 15261, USA
2Materials Engineering Laboratory, Department of Mechanical Engineering, Centre for Advanced Steels Research, University of Oulu, P.O Box 4200, 90014, Oulu, Finland
Format: article
Version: accepted version
Access: open
Online Access: PDF Full Text (PDF, 6.9 MB)
Persistent link:
Language: English
Published: Springer Nature, 2020
Publish Date: 2022-02-14


The purpose of this study was to determine the stored energy of dual-phase (DP) steels after hot rolling, coiling, and cold reduction using electron backscattered diffraction analysis. Three methods for stored energy evaluation were examined and compared: the sub-grain boundary, image quality, and kernel average misorientation methods. The results demonstrated that the sub-grain method, in which stored energy was calculated as a function of sub-grain boundary misorientations and total sub-grain boundary length, can provide more accurate stored energy values, since cold work was responsible for forming numerous dislocation structures such as shear bands, cells, and cell walls. As expected, the steels with the combination of a low coiling temperature of 580 °C and 60 pct cold reduction had the highest stored energy values. This information is important in defining how pre-anneal processing conditions might control the response of DP steels to the various transformations occurring during continuous galvanizing line simulations.

see all

Series: Metallurgical and materials transactions. A, Physical metallurgy and materials science
ISSN: 1073-5623
ISSN-E: 1543-1940
ISSN-L: 1073-5623
Volume: 51
Pages: 4727 - 4741
DOI: 10.1007/s11661-020-05890-2
Type of Publication: A1 Journal article – refereed
Field of Science: 216 Materials engineering
Copyright information: © The Minerals, Metals & Materials Society and ASM International 2020. This is a post-peer-review, pre-copyedit version of an article published in Metall Mater Trans. The final authenticated version is available online at