University of Oulu

Zhu, R., Avsievich, T., Popov, A., Bykov, A., & Meglinski, I. (2021). In vivo nano-biosensing element of red blood cell-mediated delivery. Biosensors and Bioelectronics, 175, 112845.

In vivo nano-biosensing element of red blood cell-mediated delivery

Saved in:
Author: Zhu, Ruixue1; Avsievich, Tatiana1; Popov, Alexey2;
Organizations: 1Optoelectronics and Measurement Techniques Laboratory, University of Oulu, 90570, Oulu, Finland
2VTT Technical Research Centre of Finland, Kaitoväylä 1, 90590, Oulu, Finland
3Interdisciplinary Laboratory of Biophotonics, National Research Tomsk State University, 634050, Tomsk, Russia
4Institute of Engineering Physics for Biomedicine (PhysBio), National Research Nuclear University (MEPhI), 115409, Moscow, Russia
5Department of Histology, Cytology and Embryology, Institute of Clinical Medicine N.V. Sklifosovsky, I.M. Sechenov First Moscow State Medical University, Moscow, Russia
6College of Engineering and Physical Sciences, Aston University, Birmingham, B4 7ET, UK
Format: article
Version: accepted version
Access: open
Online Access: PDF Full Text (PDF, 1.5 MB)
Persistent link:
Language: English
Published: Elsevier, 2021
Publish Date: 2022-11-22


Biosensors based on nanotechnology are developing rapidly and are widely applied in many fields including biomedicine, environmental monitoring, national defense and analytical chemistry, and have achieved vital positions in these fields. Novel nano-materials are intensively developed and manufactured for potential biosensing and theranostic applications while lacking comprehensive assessment of their potential health risks. The integration of diagnostic in vivo biosensors and the DDSs for delivery of therapeutic drugs holds an enormous potential in next-generation theranostic platforms. Controllable, precise, and safe delivery of diagnostic biosensing devices and therapeutic agents to the target tissues, organs, or cells is an important determinant in developing advanced nanobiosensor-based theranostic platforms. Particularly, inspired by the comprehensive biological investigations on the red blood cells (RBCs), advanced strategies of RBC-mediated in vivo delivery have been developed rapidly and are currently in different stages of transforming from research and design to pre-clinical and clinical investigations. In this review, the RBC-mediated delivery of in vivo nanobiosensors for applications of bio-imaging at the single-cell level, advanced medical diagnostics, and analytical detection of biomolecules and cellular activities are presented. A comprehensive perspective of the technical framework of the state-of-the-art RBC-mediated delivery systems is explained in detail to inspire the design and implementation of advanced nanobiosensor-based theranostic platforms taking advantage of RBC-delivery modalities.

see all

Series: Biosensors & bioelectronics
ISSN: 0956-5663
ISSN-E: 1873-4235
ISSN-L: 0956-5663
Volume: 175
Article number: 112845
DOI: 10.1016/j.bios.2020.112845
Type of Publication: A1 Journal article – refereed
Field of Science: 222 Other engineering and technologies
Funding: This work was partially funded by the China Scholarship Council (CSC No. 201706410089, R.Z.), STSM Grant from COST Action CA 17,140 ″Cancer Nanomedicine from the Bench to the Bedside” supported by COST (European Cooperation in Science and Technology) (grant No. ECOST-STSM-CA17140-230,919-113049, R.Z.). EDUFI Fellowship (TM-17-10,370, TM-18-10,820, T.A.) and Suomen Kulttuurirahasto (grant No. 00190188, T.A.). The authors also acknowledge the contribution of Russian Science Foundation (Projects: 19-72-30012 and 20-64-46003). I.M. acknowledges partial support from the Academy of Finland (project 325,097), MEPhI Academic Excellence Project (Contract No. 02. a03.21.0005) and the National Research Tomsk State University Academic D.I. Mendeleev Fund Program.
Academy of Finland Grant Number: 325097
Detailed Information: 325097 (Academy of Finland Funding decision)
Copyright information: © 2020 Published by Elsevier B.V. This manuscript version is made available under the CC-BY-NC-ND 4.0 license