University of Oulu

Nooshin Bahador et al 2021 J. Neural Eng. 18 056045,

Reconstruction of missing channel in electroencephalogram using spatiotemporal correlation-based averaging

Saved in:
Author: Bahador, Nooshin1; Jokelainen, Jarno2; Mustola, Seppo2;
Organizations: 1Physiological Signal Analysis Team, Center for Machine Vision and Signal Analysis, MRC Oulu, University of Oulu, Oulu, Finland
2Department of Anesthesia, Intensive Care and Pain Medicine at South Carelia Central Hospital, Lappeenranta, Finland
Format: article
Version: accepted version
Access: embargoed
Persistent link:
Language: English
Published: IOP Publishing, 2021
Publish Date: 2022-10-05


Objective: Electroencephalogram (EEG) recordings often contain large segments with missing signals due to poor electrode contact or other artifact contamination. Recovering missing values, contaminated segments and lost channels could be highly beneficial, especially for automatic classification algorithms, such as machine/deep learning models, whose performance relies heavily on high-quality data. The current study proposes a new method for recovering missing segments in EEG.

Approach: In the proposed method, the reconstructed segment is estimated by substitution of the missing part of the signal with the normalized weighted sum of other channels. The weighting process is based on inter-channel correlation of the non-missing preceding and proceeding temporal windows. The algorithm was designed to be computationally efficient. Experimental data from patients (N = 20) undergoing general anesthesia due to elective surgery were used for the validation of the algorithm. The data were recorded using a portable EEG device with ten channels and a self-adhesive frontal electrode during induction of anesthesia with propofol from waking state until burst suppression level, containing lots of variation in both amplitude and frequency properties. The proposed imputation technique was compared with another simple-structure technique. Distance correlation (DC) was used as a measure of comparison evaluation.

Main results: The proposed method, with an average DC of 82.48 ± 10.01 (µ ± σ)%, outperformed its competitor with an average DC of 67.89 ± 14.12 (µ ± σ)%. This algorithm also showed a better performance when increasing the number of missing channels.

Significance: the proposed technique provides an easy-to-implement and computationally efficient approach for the reliable reconstruction of missing or contaminated EEG segments.

see all

Series: Journal of neural engineering
ISSN: 1741-2560
ISSN-E: 1741-2552
ISSN-L: 1741-2560
Volume: 18
Issue: 5
Article number: 056045
DOI: 10.1088/1741-2552/ac23e2
Type of Publication: A1 Journal article – refereed
Field of Science: 217 Medical engineering
3112 Neurosciences
213 Electronic, automation and communications engineering, electronics
Funding: This work was supported by Grant no. 308935 from the Academy of Finland and Infotech. Nooshin Bahador would also like to thank Orion Research Foundation sr, Walter Ahlström Foundations and Tauno Tönningin Säätiö for their support.
Copyright information: © 2021 IOP Publishing Ltd. The Definitive Version of Record can be found online at: