University of Oulu

E. N. Tominaga, O. L. A. López, H. Alves, R. D. Souza and J. L. Rebelatto, "Performance Analysis of MIMO-NOMA Iterative Receivers for Massive Connectivity," in IEEE Access, doi: 10.1109/ACCESS.2022.3170715

Performance analysis of MIMO-NOMA iterative receivers for massive connectivity

Saved in:
Author: Tominaga, Eduardo N.1; López, Onel L. A.1; Alves, Hirley1;
Organizations: 1Centre for Wireless Communications (CWC), University of Oulu, Finland
2EEL, UFSC, Florianópolis-SC, Brazil
3CPGEI, UTFPR, Curitiba-PR, Brazil
Format: article
Version: published version
Access: open
Online Access: PDF Full Text (PDF, 1.2 MB)
Persistent link:
Language: English
Published: Institute of Electrical and Electronics Engineers, 2022
Publish Date: 2022-05-03


The Fifth Generation (5G) of wireless networks introduced support to Machine-Type Communications (MTC), which is the wireless connectivity solution for Internet of Things (IoT) applications. MTC is split into two different categories: massive MTC (mMTC) and critical MTC (cMTC). Current 5G standards and technologies are not capable of fully satisfying the requirements of both mMTC and cMTC use cases, thus industry and academia have already started developing solutions for MTC in beyond-5G and 6G networks. In some mMTC use cases, receivers might not be equipped with a large number of antennas owing to cost, size or power limitations, thus the number of active devices in a time slot may surpass the number of antennas. Due to the limited spatial multiplexing capabilities, only multi-antenna techniques are not enough to provide connectivity to a massive number of devices in such scenarios. In this paper, we propose and evaluate the performance of iterative linear receivers that can address this issue. By combining Multiple-Input Multiple-Output (MIMO) techniques with Non-Orthogonal Multiple Access (NOMA) exploiting Successive Interference Cancellation (SIC) or Parallel Interference Cancellation (PIC) decoding, the proposed novel receivers are capable of performing dynamic ordering SIC/PIC decoding of multiple overlapping signals even when the number of active devices surpasses that of receive antennas. The performance of the receivers is studied in terms of outage probability and computational complexity. Simulation results show that, among all the receivers studied in this paper, the PIC-based Minimum Mean Square Error (MMSE) receiver presents the best performance while at the same time reducing the number of complex signal operations such as matrix inversions.

see all

Series: IEEE access
ISSN: 2169-3536
ISSN-E: 2169-3536
ISSN-L: 2169-3536
Issue: Online first
DOI: 10.1109/ACCESS.2022.3170715
Type of Publication: A1 Journal article – refereed
Field of Science: 213 Electronic, automation and communications engineering, electronics
Funding: This research has been financially supported by Academy of Finland, 6Genesis Flagship (grant no. 318937), European Union’s Horizon 2020 research and innovation programme (EU-H2020), Hexa-X project (grant no. 101015956), FIREMAN n.326270/CHIST-ERA-17-BDSI-003 and CNPq (Brazil).
EU Grant Number: (EU) Hexa-X - 6G vision and intelligent fabric of technology enablers connecting human, physical, and digital worlds
Copyright information: © The Author(s) 2022. This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see