University of Oulu

Johan H. Scheller, Mikhail Mastepanov, Torben R. Christensen, Toward UAV-based methane emission mapping of Arctic terrestrial ecosystems, Science of The Total Environment, Volume 819, 2022, 153161, ISSN 0048-9697, https://doi.org/10.1016/j.scitotenv.2022.153161

Toward UAV-based methane emission mapping of Arctic terrestrial ecosystems

Saved in:
Author: Scheller, Johan H.1; Mastepanov, Mikhail1,2; Christensen, Torben R.1,2
Organizations: 1Department of Ecoscience, Aarhus University, Frederiksborgvej 399, DK-4000 Roskilde, Denmark
2Oulanka Research Station, University of Oulu, PO Box 8000, FI-90014, Finland
Format: article
Version: published version
Access: open
Online Access: PDF Full Text (PDF, 3.7 MB)
Persistent link: http://urn.fi/urn:nbn:fi-fe2022051635605
Language: English
Published: Elsevier, 2022
Publish Date: 2022-05-16
Description:

Abstract

Methane is an important greenhouse gas, and emissions are expected to rise in Arctic wetland ecosystems when temperatures increase due to climate change. However, current emission estimates are associated with large uncertainties because methane shows high spatial variability. A central problem is that existing methods are often spatially restricted due to limitations in access, cost, power availability, and in need of high maintenance levels. Our study explores how a setup consisting of an unmanned aerial vehicle and a high-precision trace gas analyzer can complement well-established methods, like mobile flux chambers and eddy covariance towers, by providing independent maps of spatial variability in emissions at the landscape scale.

In Zackenberg Valley, Northeast Greenland, we mapped concentration measurements from a high-precision trace gas analyzer with a reported precision of 0.6 parts per billion in a high-Arctic tundra fen ecosystem. We connected the analyzer via a long tube to a consumer-grade quadcopter, finding that the combined setup could differentiate near-surface methane concentrations of less than 5 parts per billion within a few meters under favorable weather conditions. Five of ten campaigns showed that relative methane concentration hot spots and cold spots significantly correlated with areas showing relatively high and low emissions (ranging from 1.40 to 7.4 mg m⁻² h⁻¹) during study campaigns in previous years. Concurrent measurements in a stationary automated chamber setup showed comparatively low methane emissions (~0.1 to 3.9 mg m⁻² h⁻¹) compared to previous years, indicating that a further improved UAV-analyzer setup could demonstrate clear differences in an ecosystem where methane emissions are generally higher. Calm conditions with some degree of air mixing near the surface were best suited for the mapping. Windy and wet conditions should be avoided, both for the reliability of the mapping and for safely navigating the unmanned aerial vehicle.

see all

Series: Science of the total environment
ISSN: 0048-9697
ISSN-E: 1879-1026
ISSN-L: 0048-9697
Volume: 819
Article number: 153161
DOI: 10.1016/j.scitotenv.2022.153161
OADOI: https://oadoi.org/10.1016/j.scitotenv.2022.153161
Type of Publication: A1 Journal article – refereed
Field of Science: 1181 Ecology, evolutionary biology
Subjects:
Funding: This study was supported by the Faculty of Science and Technology and the thematic centers iCLIMATE and Arctic Research Centre (ARC) at Aarhus University. Furthermore, the authors acknowledge the use of data from the Greenland Ecosystem Monitoring (GEM) database and are grateful for the field support provided by the Zackenberg Research Station.
Copyright information: © 2022 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
  https://creativecommons.org/licenses/by/4.0/