Collective bosonic effects in an array of transmon devices |
|
Author: | Orell, Tuure1; Zanner, Maximilian2,3; Juan, Mathieu L.4; |
Organizations: |
1Nano and Molecular Systems Research Unit, University of Oulu, 90014 Oulu, Finland 2Institute for Experimental Physics, University of Innsbruck, A-6020 Innsbruck, Austria 3Institute for Quantum Optics and Quantum Information, Austrian Academy of Sciences, A-6020 Innsbruck, Austria
4Institut Quantique and Département de Physique, Université de Sherbrooke, Sherbrooke J1K2R1 Québec, Canada
|
Format: | article |
Version: | published version |
Access: | open |
Online Access: | PDF Full Text (PDF, 1.9 MB) |
Persistent link: | http://urn.fi/urn:nbn:fi-fe2022062950581 |
Language: | English |
Published: |
American Physical Society,
2022
|
Publish Date: | 2022-06-30 |
Description: |
AbstractMultiple emitters coherently interacting with an electromagnetic mode give rise to collective effects such as correlated decay and coherent exchange interaction, depending on the separation of the emitters. By diagonalizing the effective non-Hermitian many-body Hamiltonian we reveal the complex-valued eigenvalue spectrum encoding the decay and interaction characteristics. We show that there are significant differences in the emerging collective effects for an array of interacting anharmonic oscillators compared to those of two-level systems and harmonic oscillators. The bosonic decay rate of the most superradiant state increases linearly as a function of the filling factor and exceeds that of two-level systems in magnitude. Furthermore, with bosonic systems, dark states are formed at each filling factor. These are in strong contrast with two-level systems, where the maximal superradiance is observed at half-filling and with larger filling factors superradiance diminishes and no dark states are formed. As an experimentally relevant setup of bosonic waveguide QED, we focus on arrays of transmon devices embedded inside a rectangular waveguide. Specifically, we study the setup of two transmon pairs realized experimentally in Zanner et al. [Nat. Phys. 18, 538 (2022)] and show that it is necessary to consider transmons as bosonic multilevel emitters to accurately recover correct collective effects for the higher excitation manifolds. see all
|
Series: |
Physical review. A |
ISSN: | 2469-9926 |
ISSN-E: | 2469-9934 |
ISSN-L: | 2469-9926 |
Volume: | 105 |
Article number: | 063701 |
DOI: | 10.1103/PhysRevA.105.063701 |
OADOI: | https://oadoi.org/10.1103/PhysRevA.105.063701 |
Type of Publication: |
A1 Journal article – refereed |
Field of Science: |
114 Physical sciences |
Subjects: | |
Funding: |
This research was financially supported by the Emil Aaltonen Foundation, the Academy of Finland under Grants No. 316619 and 320086, the European Research Council (ERC) under the European Unions Horizon 2020 research and innovation program (714235), the Austrian Science Fund FWF within the DK-ALM (W1259-N27) the Austrian Science Fund FWF within the SFB-BeyondC (F7106-N38), and the Canada First Research Excellence Fund. |
Academy of Finland Grant Number: |
316619 320086 |
Detailed Information: |
316619 (Academy of Finland Funding decision) 320086 (Academy of Finland Funding decision) |
Copyright information: |
© 2022 American Physical Society. |