University of Oulu

Gordon, I. E., Rothman, L. S., Hargreaves, R. J., Hashemi, R., Karlovets, E. V., Skinner, F. M., Conway, E. K., Hill, C., Kochanov, R. V., Tan, Y., Wcisło, P., Finenko, A. A., Nelson, K., Bernath, P. F., Birk, M., Boudon, V., Campargue, A., Chance, K. V., Coustenis, A., … Yurchenko, S. N. (2022). The HITRAN2020 molecular spectroscopic database. Journal of Quantitative Spectroscopy and Radiative Transfer, 277, 107949. https://doi.org/10.1016/j.jqsrt.2021.107949

The HITRAN2020 molecular spectroscopic database

Saved in:
Author: Gordon, I. E.1; Rothman, L. S.1; Hargreaves, R. J.1;
Organizations: 1Ctr Astrophys Harvard & Smithsonian, Atom & Mol Phys Div, Cambridge, MA 02138 USA.
2IAEA, Nucl Data Sect, Vienna Int Ctr, POB 100, A-1400 Vienna, Austria.
3Russian Acad Sci, VE Zuev Inst Atmospher Opt, Lab Theoret Spect, Tomsk 634055, Russia.
4Tomsk State Univ, QUAMER Lab, Tomsk 634050, Russia.
5Univ Sci & Technol China, Hefei Natl Lab Phys Sci Microscale, Hefei, Peoples R China.
6Nicolaus Copernicus Univ Torun, Fac Phys Astron & Informat, Inst Phys, Grudziadzka 5, PL-87100 Torun, Poland.
7Lomonosov Moscow State Univ, Dept Chem, Moscow 119991, Russia.
8Old Dominion Univ, Dept Chem, Norfolk, VA USA.
9German Aerosp Ctr DLR, Remote Sensing Technol Inst, Wessling, Germany.
10Univ Bourgogne Franche Comte, Lab Interdisciplinaire Carnot Bourgogne, UMR 6303 CNRS, Dijon, France.
11Univ Grenoble Alpes, LIPhy, CNRS, F-38000 Grenoble, France.
12Sorbonne Univ, PSL Univ, Paris Observ,CNRS, Lab Etud Spatiales & Instrumentat Astrophys, Paris, France.
13CALTECH, Jet Prop Lab, Pasadena, CA USA.
14Univ Paris Sud, Univ Paris Saclay, Inst Sci Mol Orsay, CNRS, F-91405 Orsay, France.
15Univ Massachusetts, Dept Environm Earth & Atmospher Sci, Lowell, MA USA.
16NIST, Chem Sci Div, Gaithersburg, MD USA.
17Sorbonne Univ, CNRS, MONARIS, MOl NAnoobjets Reactivite Interact & Spect, F-75005 Paris, France.
18Atmospher & Environm Res, Lexington, MA USA.
19UMR CNRS 7331, Grp Spectrometrie Mol & Atmospher, BP 1039, F-51687 Reims 2, France.
20UCL, Dept Phys & Astron, London WC1E 6BT, England.
21CALTECH, Div Astron, Pasadena, CA 91125 USA.
22Univ Bologna, Dipartimento Chim Ind Toso Montanari, Viale Risorgimento 4, I-40136 Bologna, Italy.
23MTA ELTE Complex Chem Syst Res Grp, Budapest, Hungary.
24Eotvos Lorand Univ, Inst Chem, Budapest, Hungary.
25Umea Univ, Dept Phys, S-90187 Umea, Sweden.
26Univ Leicester, Dept Phys & Astron, Leicester, Leics, England.
27Univ Leicester, Natl Ctr Earth Observat, Leicester, Leics, England.
28Univ Leicester, Leicester Inst Space & Earth Observat, Leicester, Leics, England.
29Sorbonne Univ, PSL Res Univ, Lab Meteorol Dynam IPSL, Ecole Normale Super,CNRS,Ecole Polytech, F-91120 Palaiseau, France.
30Univ Oulu, Dept Phys, DIN-90014 Oulu, Finland.
31SETI Inst, Mountain View, CA 94043 USA.
32Rochester Inst Technol, Golisano Coll Comp & Informat Sci, Rochester, NY 14623 USA.
33SUNY Coll Oswego, Comp Sci Dept, Oswego, NY 13126 USA.
34Univ Paris, F-75013 Paris, France.
35Univ Paris Est Creteil, CNRS, LISA, F-75013 Paris, France.
36NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA.
37NASA, Planetary Syst Branch, Space Sci & Astrobiol Div, Ames Res Ctr, Moffett Field, CA 94035 USA.
38Russian Acad Sci, Inst Appl Phys, Nizhnii Novgorod, Russia.
39Univ Colorado, Lab Atmospher & Space Phys, Boulder, CO 80309 USA.
40Univ Bologna, Dipartimento Chim Giacomo Ciamician, Via F Selmi 2, I-40126 Bologna, Italy.
41Univ Cologne, Phys Inst 1, D-50937 Cologne, Germany.
42Sorbonne Univ, PSL Res Univ, Lab Meteorol Dynam IPSL, Ecole Polytech,CNRS,Ecole Normale Super, F-75005 Paris, France.
43James Madison Univ, Dept Chem & Biochem, Harrisonburg, VA 22807 USA.
44Univ Adelaide, Dept Chem, Adelaide, SA 5005, Australia.
45Leibniz Inst Plasma Sci & Technol INP, Greifswald, Germany.
46Univ Libre Bruxelles, Spect Quantum Chem & Atmospher Remote Sensing SQU, CP 160-09, B-1050 Brussels, Belgium.
47Russian Acad Sci, Obenglandhov Inst Atmospher Phys, Pyzhevsky Per 3, Moscow 119017, Russia.
48Univ Namur UNamur, Inst Life Earth & Environm ILEE, Res Unit Lasers & Spect LLS, B-5000 Namur, Belgium.
49Royal Belgian Inst Space Aeron BIRA IASB, B-1180 Brussels, Belgium.
50Deutsch Elektronen Synchrotron DESY, Ctr Free Electron Laser Sci, Notkestr 85, D-22607 Hamburg, Germany.
51Univ Hamburg, Hamburg Ctr Ultrafast Imaging, Luruper Chaussee 149, D-22761 Hamburg, Germany.
Format: article
Version: published version
Access: open
Online Access: PDF Full Text (PDF, 13 MB)
Persistent link: http://urn.fi/urn:nbn:fi-fe2022081555347
Language: English
Published: Elsevier, 2022
Publish Date: 2022-08-15
Description:

Abstract

The HITRAN database is a compilation of molecular spectroscopic parameters. It was established in the early 1970s and is used by various computer codes to predict and simulate the transmission and emission of light in gaseous media (with an emphasis on terrestrial and planetary atmospheres). The HITRAN compilation is composed of five major components: the line-by-line spectroscopic parameters required for high-resolution radiative-transfer codes, experimental infrared absorption cross-sections (for molecules where it is not yet feasible for representation in a line-by-line form), collision-induced absorption data, aerosol indices of refraction, and general tables (including partition sums) that apply globally to the data. This paper describes the contents of the 2020 quadrennial edition of HITRAN. The HITRAN2020 edition takes advantage of recent experimental and theoretical data that were meticulously validated, in particular, against laboratory and atmospheric spectra. The new edition replaces the previous HITRAN edition of 2016 (including its updates during the intervening years).

All five components of HITRAN have undergone major updates. In particular, the extent of the updates in the HITRAN2020 edition range from updating a few lines of specific molecules to complete replacements of the lists, and also the introduction of additional isotopologues and new (to HITRAN) molecules: SO, CH₃F, GeH₄, CS₂, CH₃I and NF₃. Many new vibrational bands were added, extending the spectral coverage and completeness of the line lists. Also, the accuracy of the parameters for major atmospheric absorbers has been increased substantially, often featuring sub-percent uncertainties. Broadening parameters associated with the ambient pressure of water vapor were introduced to HITRAN for the first time and are now available for several molecules.

The HITRAN2020 edition continues to take advantage of the relational structure and efficient interface available at www.hitran.org and the HITRAN Application Programming Interface (HAPI). The functionality of both tools has been extended for the new edition.

see all

Series: Journal of quantitative spectroscopy & radiative transfer
ISSN: 0022-4073
ISSN-E: 1879-1352
ISSN-L: 0022-4073
Volume: 277
Article number: 107949
DOI: 10.1016/j.jqsrt.2021.107949
OADOI: https://oadoi.org/10.1016/j.jqsrt.2021.107949
Type of Publication: A1 Journal article – refereed
Field of Science: 114 Physical sciences
Subjects:
Funding: Development of the HITRAN2020 database and associated tools was supported through the NASA grants NNX17AI78G, NNX16AG51G, 80NSSC20K0962, 80NSSC20K1059. We gratefully acknowledge the many researchers who provided data, experimental and/or theoretical: Ad van der Avoird, Yury Baranov, Chris Benner, Yury Borkov, Christian Boulet, Daniil Chistikov, Malathy Devi, Randika Dodangodage, Samuel Gordon, Gerrit Groenenboom, Magnus Gustafsson, Adrian Hjalten, Shuiming Hu, Christof Janssen, Aleksandra Kyuberis, Julien Lamouroux, Daniel Lisak, Anwen Liu, Sergei Lokshtanov, Marie Aline Martin-Drumel, Andrey Muraviev, Harrald Mutschke, Laurence Regalia, Shanelle Samuels, Mary-Ann Smith, Alexander M. Solodov, Alexander A. Solodov, Ryan Thalman, Mikhail Tretyakov, Yixin Wang, Edward Wishnow, Wim van der Zande, Konstantin Vodopyanov, Rainer Volkamer, Shanshan Yu, Nikolai Zobov. Those who provided independent validations are also acknowledged: Matthew Alvarado, Juyeson Bak, Natasha Batalha, Chris Boone, Ryan Cole, Sergio DeSouza-Machado, Richard Larsson, Xiong Liu, Emile Medvedev, Clayton Mulvihill, Fabiano Oyafuso, ErwanPannier, Vivienne Payne, Olivier Pirali, Greg Rieker, Keith Shine, Clara Sousa-Silva, Kang Sun, Boris Voronin. Portions of the research described in this paper were performed at the Jet Propulsion Laboratory, California Institute of Technology, under contract with NASA. The research from the V.E. Zuev Institute of Atmospheric Optics of Siberian Branch of Russian Academy of Sciences were supported by the Ministry of Science and Higher Education of the Russian Federation. The work of the Tomsk group on ozone spectroscopy was supported by the Russian Science Foundation RNF grant no. 19-12-00171. GSMA Reims and LiPhy Grenoble acknowledge support from the French-Russian collaboration program LIA CNRS "SAMIA". AGC, TF, and RT received support from the ELTE Institutional Excellence Program from the UK Natural Environment Research Council under grants NE/N001508/1 and the European Research Council under ERC Advanced Investigator grant 8838302
Copyright information: © 2021 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
  https://creativecommons.org/licenses/by/4.0/