University of Oulu

C. Ganewattha, Z. Khan, M. Latva-Aho and J. J. Lehtomäki, "Confidence Aware Deep Learning Driven Wireless Resource Allocation in Shared Spectrum Bands," in IEEE Access, vol. 10, pp. 34945-34959, 2022, doi: 10.1109/ACCESS.2022.3162829

Confidence aware deep learning driven wireless resource allocation in shared spectrum bands

Saved in:
Author: Ganewattha, Chanaka1; Khan, Zaheer1; Latva-Aho, Matti1;
Organizations: 1Centre for Wireless Communications (CWC), University of Oulu, 90014 Oulu, Finland
Format: article
Version: published version
Access: open
Online Access: PDF Full Text (PDF, 2.4 MB)
Persistent link:
Language: English
Published: Institute of Electrical and Electronics Engineers, 2022
Publish Date: 2022-08-29


Deep learning (DL) driven proactive resource allocation (RA) is a promising approach for the efficient management of network resources. However, DL models typically have a limitation that they do not capture the uncertainty due to the arrival of new unseen samples with a distribution different than the data distribution available at DL model-training time, leading to wrong resource usage predictions. To address this, we propose a confidence aware DL solution for the robust and reliable predictions of wireless channel utilization (CU) in shared spectrum bands. We utilize an encoder-decoder based Bayesian DL model to generate prediction intervals which capture the uncertainties in wireless CU. We use the CU predictions to design a novel metric score which in turn is utilized to make an adaptive RA algorithm. We show that a DL model capturing uncertainty in CU can achieve higher data rates for a wireless network. Both DL driven predictions and RA models are tested using synthetic data as well as real CU data collected in the University of Oulu. Using analytical and simulations results, we also study the stability of the proposed RA algorithm and show that it converges to a Nash equilibrium (NE). Our results reveal that the proposed algorithm converges to an NE under 2\(N\) iterations where \(N\) is the number of network access points.

see all

Series: IEEE access
ISSN: 2169-3536
ISSN-E: 2169-3536
ISSN-L: 2169-3536
Volume: 10
Pages: 34945 - 34959
DOI: 10.1109/access.2022.3162829
Type of Publication: A1 Journal article – refereed
Field of Science: 213 Electronic, automation and communications engineering, electronics
Funding: This work was supported by the Academy of Finland through the 6Genesis Flagship under Grant 318927.
Academy of Finland Grant Number: 318927
Detailed Information: 318927 (Academy of Finland Funding decision)
Copyright information: © The Author(s) 2022. This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see