University of Oulu

A. Kumar, V. Khimani, D. Chatzopoulos and P. Hui, "FedClean: A Defense Mechanism against Parameter Poisoning Attacks in Federated Learning," ICASSP 2022 - 2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2022, pp. 4333-4337, doi: 10.1109/ICASSP43922.2022.9747497.

FedClean : a defense mechanism against parameter poisoning attacks in federated learning

Saved in:
Author: Kumar, Abhishek1; Khimani, Vivek2; Chatzopoulos, Dimitris3;
Organizations: 1University of Oulu
2Drexel University
3University College Dublin
4University of Helsinki
5Hong Kong University of Science and Technology
Format: article
Version: accepted version
Access: open
Online Access: PDF Full Text (PDF, 0.5 MB)
Persistent link: http://urn.fi/urn:nbn:fi-fe2022101161615
Language: English
Published: Institute of Electrical and Electronics Engineers, 2022
Publish Date: 2022-10-11
Description:

Abstract

In Federated learning (FL) systems, a centralized entity (server), instead of access to the training data, has access to model parameter updates computed by each participant independently and based solely on their samples. Unfortunately, FL is susceptible to model poisoning attacks, in which malicious or malfunctioning entities share polluted updates that can compromise the model’s accuracy. In this study, we propose FedClean, an FL mechanism that is robust to model poisoning attacks. The accuracy of the models trained with the assistance of FedClean is close to the one where malicious entities do not participate.

see all

Series: Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing
ISSN: 1520-6149
ISSN-E: 2379-190X
ISSN-L: 1520-6149
ISBN: 978-1-6654-0540-9
ISBN Print: 978-1-6654-0541-6
Pages: 4333 - 4337
DOI: 10.1109/ICASSP43922.2022.9747497
OADOI: https://oadoi.org/10.1109/ICASSP43922.2022.9747497
Host publication: ICASSP 2022 - 2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)
Conference: IEEE International Conference on Acoustics, Speech and Signal Processing
Type of Publication: A4 Article in conference proceedings
Field of Science: 213 Electronic, automation and communications engineering, electronics
Subjects:
Funding: Thanks to the Academy of Finland for funding.
Copyright information: © 2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.