University of Oulu

Pohjonen, A., Ramesh Babu, S., & Visuri, V.-V. (2022). Coupled model for carbon partitioning, diffusion, Cottrell atmosphere formation and cementite precipitation in martensite during quenching. Computational Materials Science, 209, 111413. https://doi.org/10.1016/j.commatsci.2022.111413

Coupled model for carbon partitioning, diffusion, Cottrell atmosphere formation and cementite precipitation in martensite during quenching

Saved in:
Author: Pohjonen, Aarne1; Babu, Shashank Ramesh2; Visuri, Ville-Valtteri3
Organizations: 1Materials and Mechanical Engineering, University of Oulu, PO Box 4200, 90014 University of Oulu, Finland
2Montanuniversität Leoben, Ferrous Metallurgy, Franz Josef Straße 18, A-8700 Leoben, Austria
3Process Metallurgy Research Unit, University of Oulu, PO Box 4300, 90014 University of Oulu, Finland
Format: article
Version: published version
Access: open
Online Access: PDF Full Text (PDF, 12.6 MB)
Persistent link: http://urn.fi/urn:nbn:fi-fe2022122974079
Language: English
Published: Elsevier, 2022
Publish Date: 2022-12-29
Description:

Abstract

High-strength low alloy martensitic alloy steels are produced by quenching methods to achieve a martensitic microstructure. The carbon supersaturation of the martensitic structure serves as a driver for autotempering, which has advantageous effects on the physical properties of the steel and may take place even at very high cooling rates. So far, the precipitation kinetics during the quenching of low alloy martensitic steels have been modelled with by assuming no carbon loss due to diffusion from martensite into the inter-lath austenite, and the partitioning and diffusion has been modeled without considering the precipitation, although previous thermodynamic calculations show both precipitation and partitioning occur at similar rates, and thus should be modeled concurrently. In addition, the segregation of carbon to the dislocations needs to be taken in to account. The aim of this work was to develop such a coupled model that can predict these phenomena concurrently in the context of martensite formation during rapid quenching. By comparing the model predictions with experimental data on two steel grades austenized and subsequently quenched at two cooling rates (120 °C/s and 1000 °C/s), it was found that the calculated maximum radius of the precipitates as well as their number distributions were in good agreement with experimental observations. In further work, it is possible to extend the model to account also for more complex heat cycles.

see all

Series: Computational materials science
ISSN: 0927-0256
ISSN-E: 1879-0801
ISSN-L: 0927-0256
Volume: 209
Article number: 111413
DOI: 10.1016/j.commatsci.2022.111413
OADOI: https://oadoi.org/10.1016/j.commatsci.2022.111413
Type of Publication: A1 Journal article – refereed
Field of Science: 216 Materials engineering
Subjects:
Funding: The funding of this research activity under the auspices of Genome of Steel (Profi3) project through grant #311934 by the Academy of Finland is gratefully acknowledged.
Copyright information: © 2022 The Author(s). This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
  https://creativecommons.org/licenses/by/4.0/