University of Oulu

Anwesh Kumar, Hannu-Pekka Komsa, Diksha Praveen Pathak, Balathanigaimani Marriyappan Sivagnanam, A. S. K. Sinha, and J. Karthikeyan, The Journal of Physical Chemistry C 2022 126 (46), 19627-19636, DOI: 10.1021/acs.jpcc.2c03679

Origin of enhanced photocatalytic activity in direct band gap g-C₃N₄ nanoribbons with tunable electronic properties for water-splitting reaction : a first-principles study

Saved in:
Author: Kumar, Anwesh1; Komsa, Hannu-Pekka2; Praveen Pathak, Diksha1;
Organizations: 1Department of Chemical and Biochemical Engineering, Rajiv Gandhi Institute of Petroleum Technology, Mubarakpur Mukhetia More, Bahadurpur, Rae Bareli229304, Uttar Pradesh, India
2Microelectronics Research Unit, University of Oulu, P.O. Box 8000, Oulu90014, Finland
3Department of Sciences and Humanities, Rajiv Gandhi Institute of Petroleum Technology, Mubarakpur Mukhetia More, Bahadurpur, Rae Bareli229304, Uttar Pradesh, India
4Department of Physics, National Institute of Technology, Durgapur713209, West Bengal, India
Format: article
Version: accepted version
Access: embargoed
Persistent link:
Language: English
Published: American Chemical Society, 2022
Publish Date: 2023-11-09


In this work, we employ density functional theory (DFT) to investigate the edge atomic structures and atomic boundaries in graphitic carbon nitride (g-C₃N₄) nanoribbons to explore their role on structural stability and electronic and photocatalytic properties. Interestingly, the nanoribbon structures with mirror twin boundaries (MTBs) have higher structural stability than the conventional nanoribbon structures due to the C–C bond formations at the MTB region. Irrespective of their edge atomic structure, the curved and corrugated nanoribbons with direct band gap are thermodynamically more stable than the planar nanoribbons with indirect band gap. In addition, the distinct electronic structures of nanoribbons with and without MTB are calculated to understand their influence on the band gap and band edge positions of the nanoribbons. Very importantly, unlike the other nanostructures of g-C₃N₄, nanoribbons are shown to possess unique electronic structures that facilitate the tunable spatial separation of valence and conduction band states. This enhances the lifetime of excited charge carriers in nanoribbon morphology. To garner deep insights into the photocatalytic properties of the g-C₃N₄ monolayer and nanoribbons, the Gibbs free energies (ΔG) of hydrogen and oxygen evolution reaction intermediates are studied to identify the active sites. To this end, our DFT studies predict enhanced photocatalytic activity of g-C₃N₄ nanoribbons over the monolayer while providing new insights into the geometry, electronic structure, and photocatalytic properties of the nanoribbons, guiding the plausible development of g-C₃N₄ nanoribbons.

see all

Series: The journal of physical chemistry. C
ISSN: 1932-7447
ISSN-E: 1932-7455
ISSN-L: 1932-7447
Volume: 126
Issue: 46
Pages: 19627 - 19636
DOI: 10.1021/acs.jpcc.2c03679
Type of Publication: A1 Journal article – refereed
Field of Science: 114 Physical sciences
Funding: J.K. acknowledges financial support from the Department of Science and Technology, India, through DST Inspire Faculty Award Grant (grant no: DST/INSPIRE/04/2019/000283), and all the authors thank the Center for Computing and Information Sciences RGIPT-Jais for high-performance computing facility.
Copyright information: This document is the Accepted Manuscript version of a Published Work that appeared in final form in The Journal of Physical Chemistry C, copyright © 2022 American Chemical Society after peer review and technical editing by the publisher. To access the final edited and published work see