University of Oulu

F. Lomio, S. Moreschini, X. Li and V. Lenarduzzi, "Anomaly Detection in Cloud-Native Systems," 2022 48th Euromicro Conference on Software Engineering and Advanced Applications (SEAA), Gran Canaria, Spain, 2022, pp. 100-103, doi: 10.1109/SEAA56994.2022.00023

Anomaly detection in cloud-native systems

Saved in:
Author: Lomio, Francesco1; Moreschini, Sergio1; Li, Xiaozhou1;
Organizations: 1Tampere University
2University of Oulu
Format: article
Version: accepted version
Access: open
Online Access: PDF Full Text (PDF, 0.1 MB)
Persistent link:
Language: English
Published: IEEE, 2022
Publish Date: 2023-03-23


Companies develop cloud-native systems deployed on public and private clouds. Since private clouds have limited resources, the systems should run efficiently by keeping performance related anomalies under control. The goal of this work is to understand whether a set of five performance-related KPIs depends on the metrics collected at runtime by Kafka, Zookeeper, and other tools (168 different metrics). We considered four weeks worth of runtime data collected from a system running in production. We trained eight Machine Learning algorithms on three weeks worth of data and tested them on one week’s worth of data to compare their prediction accuracy and their training and testing time. It is possible to detect performance-related anomalies with a very high level of accuracy (higher than 95% AUC) and with very limited training time (between 8 and 17 minutes). Machine Learning algorithms can help to identify runtime anomalies and to detect them efficiently. Future work will include the identification of a proactive approach to recognize the root cause of the anomalies and to prevent them as early as possible.

see all

ISBN: 978-1-6654-6152-8
ISBN Print: 978-1-6654-6153-5
Pages: 100 - 103
DOI: 10.1109/SEAA56994.2022.00023
Host publication: 2022 48th Euromicro Conference on Software Engineering and Advanced Applications (SEAA)
Conference: Euromicro Conference on Software Engineering and Advanced Applications
Type of Publication: A4 Article in conference proceedings
Field of Science: 113 Computer and information sciences
Copyright information: © 2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.